山東省臨沂市蘭山區(qū)2026屆數(shù)學高二上期末經(jīng)典模擬試題含解析_第1頁
山東省臨沂市蘭山區(qū)2026屆數(shù)學高二上期末經(jīng)典模擬試題含解析_第2頁
山東省臨沂市蘭山區(qū)2026屆數(shù)學高二上期末經(jīng)典模擬試題含解析_第3頁
山東省臨沂市蘭山區(qū)2026屆數(shù)學高二上期末經(jīng)典模擬試題含解析_第4頁
山東省臨沂市蘭山區(qū)2026屆數(shù)學高二上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省臨沂市蘭山區(qū)2026屆數(shù)學高二上期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題p:,,則()A., B.,C., D.,2.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,過F1的直線l交橢圓于M,N兩點,若△MF2N的周長為8,則橢圓方程為()A. B.C. D.3.如圖①所示,將一邊長為1的正方形沿對角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.4.已知橢圓:的離心率為,則實數(shù)()A. B.C. D.5.由于受疫情的影響,學校停課,同學們通過三種方式在家自主學習,現(xiàn)學校想了解同學們對假期學習方式的滿意程度,收集如圖1所示的數(shù)據(jù);教務處通過分層抽樣的方法抽取4%的同學進行滿意度調(diào)查,得到的數(shù)據(jù)如圖2.下列說法錯誤的是()A.樣本容量為240B.若,則本次自主學習學生的滿意度不低于四成C.總體中對方式二滿意學生約為300人D.樣本中對方式一滿意的學生為24人6.設村莊外圍所在曲線的方程可用表示,村外一小路所在直線方程可用表示,則從村莊外圍到小路的最短距離為()A. B.C. D.7.若空間中n個不同的點兩兩距離都相等,則正整數(shù)n的取值A.至多等于3 B.至多等于4C.等于5 D.大于58.拋物線型太陽灶是利用太陽能輻射的一種裝置.當旋轉(zhuǎn)拋物面的主光軸指向太陽的時候,平行的太陽光線入射到旋轉(zhuǎn)拋物面表面,經(jīng)過反光材料的反射,這些反射光線都從它的焦點處通過,形成太陽光線的高密集區(qū),拋物面的焦點在它的主光軸上.如圖所示的太陽灶中,灶深CD即焦點到灶底(拋物線的頂點)的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m9.如圖,空間四邊形OABC中,,,,點M在上,且滿足,點N為BC的中點,則()A. B.C. D.10.埃及胡夫金字塔是古代世界建筑奇跡之一,它的形狀可視為一個正四棱錐,以該四棱錐的高為邊長的正方形面積等于該四棱錐一個側(cè)面三角形的面積,則其側(cè)面三角形底邊上的高與底面正方形的邊長的比值為()A. B.C. D.11.在中,a,b,c分別為角A,B,C的對邊,已知,,的面積為,則()A. B.C. D.12.如圖為學生做手工時畫的橢圓(其中網(wǎng)格是由邊長為1的正方形組成),它們的離心率分別為,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在長方體中,設,,則異面直線與所成角的大小為______14.將參加冬季越野跑的名選手編號為:,采用系統(tǒng)抽樣方法抽取一個容量為的樣本,把編號分為組后,第一組的到這個編號中隨機抽得的號碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數(shù)為__________15.某校老年、中年和青年教師的人數(shù)見如表,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有人,則該樣本的老年教師人數(shù)為______.類別老年教師中年教師青年教師合計人數(shù)90018001600430016.萊昂哈德·歐拉于1765年在他的著作《三角形的幾何學》中首次提出定理:三角形的重心、垂心和外心共線.后來人們稱這條直線為該三角形的歐拉線.已知的三個頂點坐標分別是,,,則的垂心坐標為______,的歐拉線方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,已知橢圓E:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為.點P是橢圓上的一動點,且P在第一象限.記的面積為S,當時,.(1)求橢圓E的標準方程;(2)如圖,PF1,PF2的延長線分別交橢圓于點M,N,記和的面積分別為S1和S2.(i)求證:存在常數(shù)λ,使得成立;(ii)求S2-S1的最大值.18.(12分)已知命題:“,”,命題:“,”,若“且”為真命題,求實數(shù)的取值范圍19.(12分)近年來某村制作的手工藝品在國內(nèi)外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關,合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關,質(zhì)量把關程序如下:(?。┤粢患止に嚻?位行家都認為質(zhì)量過關,則該手工藝品質(zhì)量為A級;(ⅱ)若3位行家中僅有1位行家認為質(zhì)量不過關,再由另外2位行家進行第二次質(zhì)量把關.若第二次質(zhì)量把關這2位行家都認為質(zhì)量過關,則該手工藝品質(zhì)量為B級;若第二次質(zhì)量把關這2位行家中有1位或2位認為質(zhì)量不過關,則該手工藝品質(zhì)量為C級;(ⅲ)若3位行家中有2位或3位行家認為質(zhì)量不過關,則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關中一件手工藝品被1位行家認為質(zhì)量不過關的概率為,且各手工藝品質(zhì)量是否過關相互獨立(1)求一件手工藝品質(zhì)量為B級的概率;(2)求81件手工藝品中,質(zhì)量為C級的手工藝品件數(shù)的方差;(3)求10件手工藝品中,質(zhì)量為D級的手工藝品最有可能是多少件?20.(12分)已知函數(shù).(1)當時,求函數(shù)在時的最大值和最小值;(2)若函數(shù)在區(qū)間存在極小值,求a的取值范圍.21.(12分)已知圓C的圓心為,一條直徑的兩個端點分別在x軸和y軸上(1)求圓C的方程;(2)直線l:與圓C相交于M,N兩點,P(異于點M,N)為圓C上一點,求△PMN面積的最大值22.(10分)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),直線l與x軸交于點P.以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C相交于A,B兩點,求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由全稱命題的否定:將任意改存在并否定結(jié)論,即可寫出原命題p的否定.【詳解】由全稱命題的否定為特稱命題,∴是“,”.故選:C.2、A【解析】由題得c=1,再根據(jù)△MF2N的周長=4a=8得a=2,進而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,∴c=1,又根據(jù)橢圓的定義,△MF2N的周長=4a=8,得a=2,進而得b=,所以橢圓方程為.故答案為A【點睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學生對這些知識的掌握水平和分析推理能力.3、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點在面上的投影為的中點,由俯視圖可以看出C點在面上的投影為的中點,所以其左視圖為如圖所示的等腰直角三角形,直角邊長為,于是左視圖的面積為故選:A.4、C【解析】根據(jù)題意,先求得的值,代入離心率公式,即可得答案.【詳解】因為,所以所以,解得.故選:C5、B【解析】利用扇形統(tǒng)計圖和條形統(tǒng)計圖可求出結(jié)果【詳解】選項A,樣本容量為,該選項正確;選項B,根據(jù)題意得自主學習的滿意率,錯誤;選項C,樣本可以估計總體,但會有一定的誤差,總體中對方式二滿意人數(shù)約為,該選項正確;選項D,樣本中對方式一滿意人數(shù)為,該選項正確.故選:B【點睛】本題主要考查了命題真假的判斷,考查扇形統(tǒng)計圖和條形統(tǒng)計圖等基礎知識,考查運算求解能力,屬于中檔題6、B【解析】求出圓心到直線距離,減去半徑即為答案.【詳解】圓心到直線的距離,則從村莊外圍到小路的最短距離為故選:B7、B【解析】先考慮平面上的情況:只有三個點的情況成立;再考慮空間里,只有四個點的情況成立,注意運用外接球和三角形三邊的關系,即可判斷解:考慮平面上,3個點兩兩距離相等,構成等邊三角形,成立;4個點兩兩距離相等,由三角形的兩邊之和大于第三邊,則不成立;n大于4,也不成立;空間中,4個點兩兩距離相等,構成一個正四面體,成立;若n>4,由于任三點不共線,當n=5時,考慮四個點構成的正四面體,第五個點,與它們距離相等,必為正四面體的外接球的球心,由三角形的兩邊之和大于三邊,故不成立;同理n>5,不成立故選B點評:本題考查空間幾何體的特征,主要考查空間兩點的距離相等的情況,注意結(jié)合外接球和三角形的兩邊與第三邊的關系,屬于中檔題和易錯題8、C【解析】建立如圖所示的平面直角坐標系,設拋物線的方程為,根據(jù)是拋物線的焦點,求得拋物線的方程,進而求得的長.【詳解】由題意,建立如圖所示的平面直角坐標系,O與C重合,設拋物線的方程為,由題意可得是拋物線的焦點,即,可得,所以拋物線的方程為,當時,,所以.故選:C.9、B【解析】由空間向量的線性運算求解【詳解】由題意,又,,,∴,故選:B10、C【解析】設,利用得到關于的方程,解方程即可得到答案.【詳解】如圖,設,則,由題意,即,化簡得,解得(負值舍去).故選:C【點晴】本題主要考查正四棱錐的概念及其有關計算,考查學生的數(shù)學計算能力,是一道容易題.11、C【解析】利用面積公式,求出,進而求出,利用余弦定理求出,再利用正弦定理求出【詳解】由面積公式得:,因為的面積為,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故選:C12、D【解析】根據(jù)圖知分別得到橢圓、、的半長軸和半短軸,再由求解比較即可.【詳解】由圖知橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,所以,,,所以,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】建立空間直角坐標系,用向量法即可求出異面直線與所成的角.【詳解】以為原點,所在直線分別為軸,軸,軸,建立空間直角坐標系,則,所以,因為,所以,即,所以異面直線與所成的角為.故答案為:90°.14、【解析】,所以抽到穿白色衣服的選手號碼為,共15、【解析】由題意,總體中青年教師與老年教師比例為;設樣本中老年教師的人數(shù)為x,由分層抽樣的性質(zhì)可得總體與樣本中青年教師與老年教師的比例相等,即,解得.故答案為.考點:分層抽樣.16、①.##(0,1.5)②.【解析】由高線聯(lián)立可得垂心,由垂心與重心可得歐拉線方程.【詳解】由,可知邊上的高所在的直線為,又,因此邊上的高所在的直線的斜率為,所以邊上的高所在的直線為:,即,所以,所以的垂心坐標為,由重心坐標公式可得的重心坐標為,所以的歐拉線方程為:,化簡得.故答案為:;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(i)存在常數(shù),使得成立;(ii)的最大值為.【解析】(1)求點P的坐標,再利用面積和離心率,可以求出,然后就可以得到橢圓的標準方程;(2)設點的坐標和直線方程,聯(lián)立方程,解出的y坐標值與P的坐標之間的關系,求以焦距為底邊的三角形面積;利用均值定理當且僅當時取等號,求最大值.【小問1詳解】先求第一象限P點坐標:,所以P點的坐標為,所以,所以橢圓E的方程為【小問2詳解】設,易知直線和直線的坐標均不為零,因為,所以設直線的方程為,直線的方程為,由所以,因為,,所以所以同理由所以,因為,,所以所以,因為,,(i)所以所以存在常數(shù),使得成立.(ii),當且僅當,時取等號,所以的最大值為.18、或【解析】先分別求出,為真時,的范圍;再求交集,即可得出結(jié)果.【詳解】若是真命題.則對任意恒成立,∴;若為真命題,則方程有實根,∴,解得或,由題意,真也真,∴或即實數(shù)的取值范圍是或.19、(1)(2)(3)2件【解析】(1)根據(jù)相互獨立事件的概率公式計算可得;(2)首先求出一件手工藝品質(zhì)量為C級的概率,設81件手工藝品中質(zhì)量為C級的手工藝品是X件,則,再根據(jù)二項分布的方差公式計算可得;(3)首先求出一件手工藝品質(zhì)量為D級的概率,設10件手工藝品中質(zhì)量為D級的手工藝品是ξ件,則,根據(jù)二項分布的概率公式求出的最大值,即可得解;【小問1詳解】解:一件手工藝品質(zhì)量為B級的概率為【小問2詳解】解:一件手工藝品質(zhì)量為C級的概率為,設81件手工藝品中質(zhì)量為C級的手工藝品是X件,則,所以【小問3詳解】解:一件手工藝品質(zhì)量為D級的概率為,設10件手工藝品中質(zhì)量為D級的手工藝品是ξ件,則,則,由解得,所以當時,,即,由解得,所以當時,,所以當時,最大,即10件手工藝品中質(zhì)量為D級的最有可能是2件20、(1)最大值為9,最小值為;(2).【解析】(1)利用導數(shù)研究函數(shù)的單調(diào)性,進而確定在的極值、端點值,比較它們的大小即可知最值.(2)討論參數(shù)a的符號,利用導數(shù)研究的單調(diào)性,結(jié)合已知區(qū)間的極值情況求參數(shù)a的范圍即可.【小問1詳解】由題,時,,則,令,得或1,則時,,單調(diào)遞增;時,,單調(diào)遞減;時,,單調(diào)遞增.∴在時取極大值,在時取極小值,又,,綜上,在區(qū)間上取得的最大值為9,最小值為.小問2詳解】,且,當時,單調(diào)遞增,函數(shù)沒有極值;當時,時,單調(diào)遞增;時,單調(diào)遞減;時,,單調(diào)遞增.∴在取得極大值,在取得極小值,則;當時,時,單調(diào)遞增;時,單調(diào)遞減;時,,單調(diào)遞增.∴在取得極大值,在取得極小值,由得:.綜上,函數(shù)在區(qū)間存在極小值時a的取值范圍是.21、(1);(2).【解析】(1)設直徑兩端點分別為,,由中點公式求參數(shù)a、b,進而求半徑,即可得圓C的方程;(2)利用弦心距、半徑、弦長的幾何關系求,再由圓心到直線l的距離

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論