版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
陜西省延安市寶塔四中2026屆高一數(shù)學第一學期期末學業(yè)水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)既是奇函數(shù),又是在區(qū)間上是增函數(shù)是A. B.C. D.2.若,均為銳角,,,則()A. B.C. D.3.的值是()A. B.C. D.4.在平行四邊形中,設(shè),,,,下列式子中不正確是()A. B.C. D.5.已知函數(shù)則A. B.C. D.6.設(shè)函數(shù),若,則的取值范圍為A. B.C. D.7.已知函數(shù)是R上的單調(diào)函數(shù),則實數(shù)a的取值范圍是()A. B.C. D.8.若是圓上動點,則點到直線距離的最大值A(chǔ).3 B.4C.5 D.69.設(shè)點分別是空間四邊形的邊的中點,且,,,則異面直線與所成角的正弦值是()A. B.C. D.10.若,,則的值為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)若,則實數(shù)的值等于________12.寫出一個周期為且值域為的函數(shù)解析式:_________13.為了解某校高三學生身體狀況,用分層抽樣的方法抽取部分男生和女生的體重,將男生體重數(shù)據(jù)整理后,畫出了頻率分布直方圖,已知圖中從左到右前三個小組頻率之比為1:2:3,第二小組頻數(shù)為12,若全校男、女生比例為3:2,則全校抽取學生數(shù)為________14.已知,則_______.15.一個棱長為2cm的正方體的頂點都在球面上,則球的體積為_______cm3.16.已知在上單調(diào)遞增,則的范圍是_____三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若函數(shù)的定義域和值域均為,求實數(shù)的值;(2)若在區(qū)間上是減函數(shù),且對任意的,總有,求實數(shù)的取值范圍.(可能用到的不等關(guān)系參考:若,且,則有)18.已知函數(shù)(1)求的最小正周期;(2)當時,求的最小值以及取得最小值時的集合19.已知函數(shù)是定義在R上的奇函數(shù),當時,.(1)求函數(shù)在上的解析式;(2)求不等式解集.20.已知函數(shù).(1)若,求的定義域(2)若為奇函數(shù),求a值.21.已知,(1)求的值;(2)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】對于,函數(shù),定義域是,有,且在區(qū)間是增函數(shù),故正確;對于,函數(shù)的定義域是,是非奇非偶函數(shù),故錯誤;對于,函數(shù)的定義域是,有,在區(qū)間不是增函數(shù),故錯誤;對于,函數(shù)的定義域是,有,是偶函數(shù)不是奇函數(shù),故錯誤故選A2、B【解析】由結(jié)合平方關(guān)系可解.【詳解】因為為銳角,,所以,又,均為銳角,所以,所以,所以.故選:B3、C【解析】根據(jù)誘導(dǎo)公式即可求出【詳解】故選:C4、B【解析】根據(jù)向量加減法計算,再進行判斷選擇.【詳解】;;;故選:B【點睛】本題考查向量加減法,考查基本分析求解能力,屬基礎(chǔ)題.5、A【解析】,.6、A【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)單調(diào)遞增,,列出不等式,解出即可.【詳解】∵函數(shù)在定義域內(nèi)單調(diào)遞增,,∴不等式等價于,解得,故選A.【點睛】本題主要考查了對數(shù)不等式的解法,在解題過程中要始終注意函數(shù)的定義域,也是易錯點,屬于中檔題.7、B【解析】可知分段函數(shù)在R上單調(diào)遞增,只需要每段函數(shù)單調(diào)遞增且在臨界點處的函數(shù)值左邊小于等于右邊,列出不等式即可【詳解】可知函數(shù)在R上單調(diào)遞增,所以;對稱軸,即;臨界點處,即;綜上所述:故選:B8、C【解析】圓的圓心為(0,3),半徑為1.是圓上動點,則點到直線距離的最大值為圓心到直線的距離加上半徑即可.又直線恒過定點,所以.所以點到直線距離的最大值為4+1=5.故選C.9、C【解析】取BD中點G,連結(jié)EG、FG∵△ABD中,E、G分別為AB、BD的中點∴EG∥AD且EG=AD=4,同理可得:FG∥BC且FG=BC=3,∴∠FEG(或其補角)就是異面直線AD與EF所成的角∵△FGE中,EF=5,EG=4,F(xiàn)G=3,∴EF2=25=EG2+FG2,得故答案為C.10、D【解析】根據(jù)誘導(dǎo)公式即可直接求值.【詳解】因為,所以,又因為,所以,所以.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、-3【解析】先求,再根據(jù)自變量范圍分類討論,根據(jù)對應(yīng)解析式列方程解得結(jié)果.【詳解】當a>0時,2a=-2解得a=-1,不成立當a≤0時,a+1=-2,解得a=-3【點睛】求某條件下自變量的值,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.12、【解析】根據(jù)函數(shù)的周期性和值域,在三角函數(shù)中確定一個解析式即可【詳解】解:函數(shù)的周期為,值域為,,則的值域為,,故答案為:13、80【解析】頻率分布直方圖中,先根據(jù)小矩形的面積等于這一組的頻率求出四與第五組的頻率和,再根據(jù)條件求出前三組的頻數(shù),再依據(jù)頻率的和等于1,求出前三組的頻率,從而求出抽取的男生數(shù),最后按比例求出全校抽取學生數(shù)即可【詳解】根據(jù)圖可知第四與第五組的頻率和為(0.0125+0.0375)×5=0.25∵從左到右前三個小組頻率之比1:2:3,第二小組頻數(shù)為12∴前三個小組的頻數(shù)為36,從而男生有人∵全校男、女生比例為3:2,∴全校抽取學生數(shù)為48×=80故答案為80【點睛】本題考查頻數(shù),頻率及頻率分布直方圖,考查運用統(tǒng)計知識解決簡單實際問題的能力,數(shù)據(jù)處理能力和運用意識14、【解析】將條件平方可得答案.【詳解】因為,所以,所以故答案為:15、【解析】因為一個正方體的頂點都在球面上,它的棱長為2,所以正方體的外接球的直徑就是正方體的對角線的長度:2所以球的半徑為:所求球的體積為=故答案為:16、【解析】令,利用復(fù)合函數(shù)的單調(diào)性分論討論函數(shù)的單調(diào)性,列出關(guān)于的不等式組,求解即可.【詳解】令當時,由題意知在上單調(diào)遞增且對任意的恒成立,則,無解;當時,由題意知在上單調(diào)遞減且對任意的恒成立,則,解得.故答案為:【點睛】本題考查對數(shù)型復(fù)合函數(shù)的單調(diào)性,同增異減,求解時注意對數(shù)函數(shù)的定義域,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2;(2).【解析】(1)確定函數(shù)的對稱軸,從而可得函數(shù)的單調(diào)性,利用的定義域和值域均是,建立方程,即可求實數(shù)的值;(2)由函數(shù)的單調(diào)性得出在單調(diào)遞減,在單調(diào)遞增,從而求出在上的最大值和最小值,進而求出實數(shù)的取值范圍.【小問1詳解】易知的對稱軸為直線,故在上為減函數(shù),∴在上單調(diào)遞減,即,,代入解得或(舍去).故實數(shù)的值為2.【小問2詳解】∵在是減函數(shù),∴.∴在上單調(diào)遞減,在上單調(diào)遞增,又函數(shù)的對稱軸為直線,∴,,又,∴.∵對任意的,總有,∴,即,解得,又,∴,即實數(shù)的取值范圍為.18、(1),(2),時【解析】(1)先利用同角平方關(guān)系及二倍角公式,輔助角公式進行化簡,即可求解;(2)由的范圍先求出的范圍,結(jié)合余弦函數(shù)的性質(zhì)即可求解【詳解】解:(1),,,,故的最小正周期;(2)由可得,,當?shù)眉磿r,函數(shù)取得最小值.所以,時19、(1)(2)【解析】(1)根據(jù)奇函數(shù)的知識求得函數(shù)在上的解析式.(2)結(jié)合函數(shù)的單調(diào)性、奇偶性求得不等式的解集.小問1詳解】當時,,.所以函數(shù)在上的解析式為.【小問2詳解】當時,為增函數(shù),所以在上為增函數(shù).由得,所以,所以,所以不等式的解集為.20、(1);(2).【解析】(1)根據(jù)定義域的求法,求得的定義域.(2)根據(jù)奇函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全生產(chǎn)培訓(xùn)課件PDF
- 2026年企業(yè)合規(guī)管理培訓(xùn)
- 四會市石狗鎮(zhèn)2025年專職消防隊人員招聘備考題庫及一套完整答案詳解
- 2026年杭州師范大學公開招聘65名教學科研人員備考題庫及一套完整答案詳解
- 2025年軟件測試規(guī)范與質(zhì)量保證指南
- 小學中高年級道德與法治《勤儉節(jié)約》教學設(shè)計
- 智慧校園背景下物聯(lián)網(wǎng)技術(shù)支持下的教育資源共享與協(xié)作學習策略教學研究課題報告
- 《普通話語音系統(tǒng)與水平測試》教學設(shè)計
- 2025年醫(yī)療衛(wèi)生信息化系統(tǒng)使用指南
- 2025年水務(wù)行業(yè)水質(zhì)監(jiān)測與治理技術(shù)指南
- 機關(guān)單位wifi管理制度(3篇)
- 數(shù)據(jù)中心節(jié)能技術(shù)實施方案
- 2025年國家開放大學《電子政務(wù)概論》期末考試備考題庫及答案解析
- 醫(yī)療器械使用與維護常見問題匯編
- 中國資產(chǎn)托管行業(yè)發(fā)展報告2025
- 聯(lián)合培養(yǎng)研究生協(xié)議
- 虛擬電廠課件
- 部隊核生化防護基礎(chǔ)課件
- 醫(yī)療器械胰島素泵市場可行性分析報告
- 2025年《處方管理辦法》培訓(xùn)考核試題(附答案)
- 租金催繳管理辦法
評論
0/150
提交評論