2026屆上海建平中學高二上數(shù)學期末綜合測試模擬試題含解析_第1頁
2026屆上海建平中學高二上數(shù)學期末綜合測試模擬試題含解析_第2頁
2026屆上海建平中學高二上數(shù)學期末綜合測試模擬試題含解析_第3頁
2026屆上海建平中學高二上數(shù)學期末綜合測試模擬試題含解析_第4頁
2026屆上海建平中學高二上數(shù)學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆上海建平中學高二上數(shù)學期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知下列四個命題,其中正確的是()A. B.C. D.2.在等差數(shù)列中,,,則使數(shù)列的前n項和成立的最大正整數(shù)n=()A.2021 B.2022C.4041 D.40423.關于實數(shù)a,b,c,下列說法正確的是()A.如果,則,,成等差數(shù)列B.如果,則,,成等比數(shù)列C.如果,則,,成等差數(shù)列D.如果,則,,成等差數(shù)列4.設a,b,c非零實數(shù),且,則()A. B.C. D.5.直三棱柱ABC-A1B1C1中,△ABC為等邊三角形,AA1=AB,M是A1C1的中點,則AM與平面所成角的正弦值為()A. B.C. D.6.已知空間向量,,且,則的值為()A. B.C. D.7.已知數(shù)列的前項和滿足,記數(shù)列的前項和為,.則使得的值為()A. B.C. D.8.已知向量與平行,則()A. B.C. D.9.設是定義在R上的函數(shù),其導函數(shù)為,滿足,若,則()A. B.C. D.a,b的大小無法判斷10.在等比數(shù)列中,,且,則t=()A.-2 B.-1C.1 D.211.丹麥數(shù)學家琴生(Jensen)是世紀對數(shù)學分析做出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設函數(shù)在上的導函數(shù)為,在上的導函數(shù)為,在上恒成立,則稱函數(shù)在上為“凹函數(shù)”.則下列函數(shù)在上是“凹函數(shù)”的是()A. B.C. D.12.已知命題“”為真命題,“”為真命題,則()A.為假命題,為真命題 B.為真命題,為真命題C.為真命題,為假命題 D.為假命題,為假命題二、填空題:本題共4小題,每小題5分,共20分。13.“第七屆全國畫院美術作品展”于2021年12月2日至2022年2月20日在鄭州美術館展出.已知某油畫作品高2米,寬6米,畫的底部離地有2.7米(如圖所示).有一身高為1.8米的游客從正面觀賞它(該游客頭頂E到眼睛C的距離為10),設該游客離墻距離CD為x米,視角為.為使觀賞視角最大,x應為___________米.14.已知是定義在上的奇函數(shù),當時,則當時___________.15.已知兩點和則以為直徑的圓的標準方程是__________.16.若圓C:與圓D2的公共弦長為,則圓D的半徑為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:(1)若拋物線C上一點P到F的距離是4,求P的坐標;(2)若不過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點18.(12分)已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.(1)求橢圓的標準方程;(2)已知點和平面內一點,過點任作直線與橢圓相交于,兩點,設直線,,的斜率分別為,,,,試求,滿足的關系式.19.(12分)已知數(shù)列的前n項和為,且滿足(1)證明數(shù)列是等比數(shù)列;(2)若數(shù)列滿足,證明數(shù)列的前n項和20.(12分)已知橢圓的離心率為,短軸長為2(1)求橢圓的方程;(2)設過點且斜率為的直線與橢圓交于不同的兩點,,求當?shù)拿娣e取得最大值時的值21.(12分)已知圓C的圓心在坐標原點,且過點M()(1)求圓C的方程;(2)已知點P是圓C上的動點,試求點P到直線的距離的最小值;22.(10分)已知命題p:方程的曲線是焦點在y軸上的雙曲線;命題q:方程無實根.若p或q為真,¬q為真,求實數(shù)m的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)基本初等函數(shù)的求導公式和求導法則即可求解判斷.【詳解】,故A錯誤;,故B正確;,故C錯誤;,故D錯誤.故選:B.2、C【解析】根據(jù)等差數(shù)列的性質易得,,再應用等差數(shù)列前n項和公式及等差中項、下標和的性質可得、,即可確定答案.【詳解】因為是等差數(shù)列且,,所以,,.故選:C.3、B【解析】根據(jù)給定條件結合取特值、推理計算等方法逐一分析各個選項并判斷即可作答.【詳解】對于A,若,取,而,即,,不成等差數(shù)列,A不正確;對于B,若,則,即,,成等比數(shù)列,B正確;對于C,若,取,而,,,不成等差數(shù)列,C不正確;對于D,a,b,c是實數(shù),若,顯然都可以為負數(shù)或者0,此時a,b,c無對數(shù),D不正確.故選:B4、C【解析】對于A、B、D:取特殊值否定結論;對于C:利用作差法證明.【詳解】對于A:取符合已知條件,但是不成立.故A錯誤;對于B:取符合已知條件,但是,所以不成立.故B錯誤;對于C:因為,所以.故C正確;對于D:取符合已知條件,但是,所以不成立.故D錯誤;故選:C.5、B【解析】取的中點,以為原點,所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,即可根據(jù)線面角的向量公式求出【詳解】如圖所示,取的中點,以為原點,所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,不妨設,則,所以,平面的一個法向量為設AM與平面所成角為,向量與所成的角為,所以,即AM與平面所成角的正弦值為故選:B6、B【解析】根據(jù)向量垂直得,即可求出的值.【詳解】.故選:B.7、B【解析】由,求得,得到,結合裂項法求和,即可求解.【詳解】數(shù)列的前項和滿足,當時,;當時,,當時,適合上式,所以,則,所以.故選:B.8、D【解析】根據(jù)兩向量平行可求得、的值,即可得出合適的選項.【詳解】由已知,解得,,則.故選:D.9、A【解析】首先構造函數(shù),再利用導數(shù)判斷函數(shù)的單調性,即可判斷選項.【詳解】設,,所以函數(shù)在單調遞增,即,所以,那么,即.故選:A10、A【解析】先求出,利用等比中項求出t.【詳解】在等比數(shù)列中,,且,所以所以,即,解得:.當時,,不符合等比數(shù)列的定義,應舍去,故.故選:A.11、B【解析】根據(jù)“凹函數(shù)”的定義逐項驗證即可解出【詳解】對A,,當時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因為,所以D錯誤故選:B12、A【解析】根據(jù)復合命題的真假表即可得出結果.【詳解】若“”為真命題,則為假命題,又“”為真命題,則至少有一個真命題,所以為真命題,即為假命題,為真命題.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設,進而得到,,從而求出,再利用基本不等式即可求得答案.【詳解】設,則,,所以,當且僅當時取“=”.所以該游客離墻距離為米時,觀賞視角最大.故答案為:.14、【解析】當時,利用及求得函數(shù)的解析式.【詳解】當時,,由于函數(shù)是奇函數(shù),故.【點睛】本小題主要考查已知函數(shù)的奇偶性以及軸一側的解析式,求另一側的解析式,屬于基礎題.15、【解析】根據(jù)的中點是圓心,是半徑,即可寫出圓的標準方程.【詳解】因為和,故可得中點為,又,故所求圓的半徑為,則所求圓的標準方程是:.故答案為:.16、【解析】首先根據(jù)圓與圓的位置關系得到公共弦方程,再根據(jù)弦長求解即可.【詳解】根據(jù)得公共弦方程為:.因為公共弦長為,所以直線過圓的圓心.所以,解得.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】(1)由拋物線的定義,可得點的坐標;(2)可設直線的方程為,,,,與拋物線聯(lián)立,消,利用韋達定理求得,,再根據(jù),可得,從而可求得參數(shù)的關系,即可得出結論.【小問1詳解】解:設,,由拋物線的定義可知,即,解得,將代入方程,得,即的坐標為;【小問2詳解】證明:由題意知直線不能與軸平行,可設直線的方程為,與拋物線聯(lián)立得,消去得,設,,,則,,由,可得,即,即,即,又,解得,所以直線方程為,當時,,所以直線過定點18、(1);(2).【解析】(1)根據(jù)直線與圓相切可得,再結合離心率及間的關系可得的值,進而得到橢圓的方程;(2)分直線的斜率存在與不存在兩種情況考慮,分別求出點的坐標后再求出的值,進而得到,最后根據(jù)斜率公式可得所求的關系式【詳解】(1)因為圓與直線相切,所以圓心到直線的距離,即所以,又由題意得所以,所以橢圓的標準方程為(2)①當直線的斜率不存在時,可得直線方程為,由,解得或,不妨設,,所以,又,所以,所以,整理得所以滿足的關系式為.②當直線的斜率存在時,設直線,由消去并整理得,設點,則有,所以.所以,所以,整理得綜上可得滿足的關系式為【點睛】(1)判斷直線與橢圓的位置關系時,一般把二者方程聯(lián)立得到方程組,判斷方程組解的個數(shù),方程組有幾個解,直線與橢圓就有幾個公共點,方程組的解對應公共點的坐標(2)對于直線與橢圓位置關系的題目,注意設而不求和整體代入方法的運用.解題步驟為:①設直線與橢圓的交點為;②聯(lián)立直線與橢圓的方程,消元得到關于x或y的一元二次方程;③利用根與系數(shù)的關系設而不求;④利用題干中的條件轉化為,或,,進而求解.19、(1)證明見解析(2)證明見解析【解析】(1)可根據(jù)已知的與的遞推關系,利用求解出數(shù)列的首項,然后當時,遞推做差,利用消掉,即可得到與之間的關系,從而完成證明;(2)利用第(1)問求解出的數(shù)列的通項公式,帶入到中,再使用錯位相減法進行求和,根據(jù)最后計算的結果與比較即可完成證明.【小問1詳解】由題意得,當時,,∴,當時,,∴,∵,∴,于是有,故數(shù)列是以3為首項,3為公比的等比數(shù)列.得證.【小問2詳解】由(1)可知,∴,,①,②,②?①得:,∴,∵,故,∴得證.20、(1);(2).【解析】(1)由短軸長得,由離心率處也的關系,從而可求得,得橢圓方程;(2)設,,直線的方程為,代入橢圓方程應用韋達定理得,由弦長公式得弦長,求出原點到直線的距離,得出三角形面積為的函數(shù),用換元法,基本不等式求得最大值,得值【詳解】解:(1)由題意得,,所以,,橢圓的方程為(2)直線的方程為,代入橢圓的方程,整理得由題意,,設,則,弦長,點到直線的距離,所以的面積,令,則,當且僅當時取等號.所以,對應的,可解得,滿足題意21、(1)(2)【解析】(1)由圓C的圓心在坐標原點,且過點,求得圓的半徑,利用圓的標準方程,即可求解;(2)由點到直線的距離公式,求得圓心到直線l的距離為,進而得到點P到直線的距離的最小值為,得出答案.【詳解】(1)由題意,圓C的圓心在坐標原點,且過點,所以圓C的半徑為,所以圓C的方程為.(2)由題意,圓心到直線l的距離為,所以P到直線的距離的最小值為.【點睛】本題主要考查了圓標準方程的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論