版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州黔東南州三校聯(lián)考2026屆數(shù)學高二上期末教學質量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線,兩個不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則2.已知等差數(shù)列{an}中,a4+a9=8,則S12=()A.96 B.48C.36 D.243.已知為坐標原點,點的坐標為,點的坐標滿足,則的最小值為()A B.C. D.44.橢圓的焦點坐標為()A. B.C. D.5.在平面直角坐標系中,直線+的傾斜角是()A. B.C. D.6.圓的圓心和半徑分別是()A., B.,C., D.,7.給出下列結論:①如果數(shù)據(jù)的平均數(shù)為3,方差為0.2,則的平均數(shù)和方差分別為14和1.8;②若兩個變量的線性相關性越強,則相關系數(shù)r的值越接近于1.③對A、B、C三種個體按3:1:2的比例進行分層抽樣調查,若抽取的A種個體有15個,則樣本容量為30.則正確的個數(shù)是().A.3 B.2C.1 D.08.已知為坐標原點,向量,點,.若點在直線上,且,則點的坐標為().A. B.C. D.9.已知,則()A. B.C. D.10.幾何學史上有一個著名的米勒問題:“設點、是銳角的一邊上的兩點,試在邊上找一點,使得最大的.”如圖,其結論是:點為過、兩點且和射線相切的圓的切點.根據(jù)以上結論解決一下問題:在平面直角坐標系中,給定兩點,,點在軸上移動,當取最大值時,點的橫坐標是()A.B.C.或D.或11.設函數(shù)在R上可導,其導函數(shù)為,且函數(shù)的圖像如題(8)圖所示,則下列結論中一定成立的是A.函數(shù)有極大值和極小值B.函數(shù)有極大值和極小值C.函數(shù)有極大值和極小值D.函數(shù)有極大值和極小值12.已知點F是雙曲線的左焦點,點E是該雙曲線的右頂點,過F作垂直于x軸的直線與雙曲線交于G、H兩點,若是銳角三角形,則該雙曲線的離心率e的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線:的右焦點為,過點向雙曲線的一條漸近線引垂線,垂足為,交另一條漸近線于,若,則雙曲線的漸近線方程為__________14.已知橢圓的右焦點為,短軸的一個端點為,直線交橢圓于兩點.若,點到直線的距離不小于,則橢圓的離心率的取值范圍是______________15.已知橢圓的右頂點為,為上一點,則的最大值為______.16.有一組數(shù)據(jù),其平均數(shù)為3,方差為2,則新的數(shù)據(jù)的方差為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱的所有棱長都是,平面,為的中點,為的中點(1)證明:直線平面;(2)求平面與平面夾角的余弦值18.(12分)某保險公司根據(jù)官方公布的歷年營業(yè)收入,制成表格如下:表1年份2011201220132014201520162017201820192020年份序號x12345678910營業(yè)收入y(億元)0.529.3633.6132352571912120716822135由表1,得到下面的散點圖:根據(jù)已有的函數(shù)知識,某同學選用二次函數(shù)模型(b和a是待定參數(shù))來擬合y和x的關系.這時,可以對年份序號做變換,即令,得,由表1可得變換后的數(shù)據(jù)見表2.表2T149162536496481100Y0.529.3633.6132352571912120716822135(1)根據(jù)表中數(shù)據(jù),建立y關于t的回歸方程(系數(shù)精確到個位數(shù));(2)根據(jù)(1)中得到的回歸方程估計2021年的營業(yè)收入,以及營業(yè)收入首次超過4000億元的年份.附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):.19.(12分)已知橢圓C:短軸長為2,且點在C上(1)求橢圓C的標準方程;(2)設、為橢圓的左、右焦點,過的直線l交橢圓C與A、B兩點,若的面積是,求直線l的方程20.(12分)已知函數(shù).(1)求的單調區(qū)間;(2)求函數(shù)在區(qū)間上的最大值與最小值.21.(12分)已知拋物線的焦點F到準線的距離為2(1)求C的方程;(2)已知O為坐標原點,點P在C上,點Q滿足,求直線斜率最大值.22.(10分)如圖,在四棱錐中,,,,,為中點,且平面.(1)求點到平面的距離;(2)線段上是否存在一點,使平面?如果不存在,請說明理由;如果存在,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)線面、面面位置關系有關知識對選項逐一分析,由此確定正確選項.【詳解】對于A選項,根據(jù)面面垂直的判定定理可知,A選項正確,對于B選項,當,時,和可能相交,B選項錯誤,對于C選項,當,時,可能含于,C選項錯誤,對于D選項,當,時,可能含于,D選項錯誤.故選:A2、B【解析】利用等差數(shù)列的性質求解即可.【詳解】解:由等差數(shù)列的性質得.故選:B3、B【解析】由數(shù)量積的坐標運算求得,令,化為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案【詳解】解:根據(jù)題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當直線過時,直線在軸上的截距最小,有最小值為,即,所以故選:B4、B【解析】根據(jù)方程可得,且焦點軸上,然后可得答案.【詳解】由橢圓的方程可得,且焦點在軸上,所以,即,故焦點坐標為故選:B5、B【解析】由直線方程得斜率,從而得傾斜角【詳解】由直線方程知直角斜率為,在上正切值為1的角為,即為傾斜角故選:B6、D【解析】先化為標準方程,再求圓心半徑即可.【詳解】先化為標準方程可得,故圓心為,半徑為.故選:D.7、B【解析】對結論逐一判斷【詳解】對于①,則的平均數(shù)為,方差為,故①正確對于②,若兩個變量的線性相關性越強,則相關系數(shù)r的絕對值越接近于1,故②錯誤對于③,對A、B、C三種個體按3:1:2的比例進行分層抽樣調查,若抽取的A種個體有15個,則樣本容量為,故③正確故正確結論為2個故選:B8、A【解析】由在直線上,設,再利用向量垂直,可得,進而可求E點坐標.【詳解】因為在直線上,故存在實數(shù)使得,.若,則,所以,解得,因此點的坐標為.故選:A.【定睛】本題考查了空間向量的共線和數(shù)量積運算,考查了運算求解能力和邏輯推理能力,屬于一般題目.9、B【解析】根據(jù)基本初等函數(shù)的導數(shù)公式及求導法則求導函數(shù)即可.【詳解】.故選:B.10、A【解析】根據(jù)米勒問題的結論,點應該為過點、的圓與軸的切點,設圓心的坐標為,寫出圓的方程,并將點、的坐標代入可求出點的橫坐標.【詳解】解:設圓心的坐標為,則圓的方程為,將點、的坐標代入圓的方程得,解得或(舍去),因此,點的橫坐標為,故選:A.11、D【解析】則函數(shù)增;則函數(shù)減;則函數(shù)減;則函數(shù)增;選D.【考點定位】判斷函數(shù)的單調性一般利用導函數(shù)的符號,當導函數(shù)大于0則函數(shù)遞增,當導函數(shù)小于0則函數(shù)遞減12、B【解析】根據(jù)是等腰三角形且為銳角三角形,得到,即,解得離心率范圍.【詳解】,當時,,,不妨取,,是等腰三角形且為銳角三角形,則,即,,即,,解得,故.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意得雙曲線的右焦點F(c,0),設一漸近線OM的方程為,則另一漸近線ON的方程為.設,∵,∴,∴,解得∴點M的坐標為,又,∴,整理得,∴雙曲線的漸近線方程為答案:點睛:(1)已知雙曲線的標準方程求雙曲線的漸近線方程時,只要令雙曲線的標準方程中“1”為“0”就得到兩漸近線方程,即方程就是雙曲線的兩條漸近線方程(2)求雙曲線的漸進線方程的關鍵是求出的關系,并根據(jù)焦點的位置確定出漸近線的形式,并進一步得到其方程14、【解析】設左焦點為,連接,.則四邊形是平行四邊形,可得.設,由點M到直線l的距離不小于,即有,解得.再利用離心率計算公式即可得出范圍【詳解】設左焦點為,連接,.則四邊形是平行四邊形,故,所以,所以,設,則,故,從而,,,所以,即橢圓的離心率的取值范圍是【點睛】本題考查了橢圓的定義標準方程及其性質、點到直線的距離公式、不等式的性質,考查了推理能力與計算能力,屬于中檔題15、【解析】設出點P的坐標,利用兩點間距離公式建立函數(shù)關系,借助二次函數(shù)計算最值作答.【詳解】橢圓的右頂點為,設點,則,即,且,于是得,因,則當時,,所以的最大值為.故答案為:16、2【解析】由已知得,,然后計算的平均數(shù)和方差可得答案.【詳解】由已知得,,所以,.故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)取的中點,連接交于,連接,,由平面幾何得,再根據(jù)線面平行的判定可得證;(2)建立如圖所示的空間直角坐標系,利用向量法即可得結果.【小問1詳解】取的中點,連接交于,連接,在三棱柱中,為的中點,,為的中點,且,且,四邊形為平行四邊形,又平面,平面,平面;【小問2詳解】平面,,平面,,,兩兩垂直,以為原點,,,所在直線分別為軸,軸,軸,建立如圖所示的空間直角坐標系,則,,,,設平面的法向量為,則即取,則,,又是平面的一個法向量,,故平面和平面夾角的余弦值為18、(1);(2)估計2021年的營業(yè)收入約為2518億元,估計營業(yè)收入首次超過4000億元的年份為2024年.【解析】(1)根據(jù)的公式,將題干中的數(shù)據(jù)代入,即得解;(2)代入,可估計2021年的營業(yè)收入;令,可求解的范圍,繼而得到的范圍,即得解【詳解】(1),,故回歸方程為.(2)2021年對應的t的值為121,營業(yè)收入,所以估計2021年的營業(yè)收入約為2518億元.依題意有,解得,故.因為,所以估計營業(yè)收入首次超過4000億元的年份序號為14,即2024年.19、(1);(2)或.【解析】(1)根據(jù)短軸長求出b,根據(jù)M在C上求出a;(2)根據(jù)題意設直線l為,與橢圓方程聯(lián)立得根與系數(shù)關系,根據(jù)=即可求出m的值.【小問1詳解】∵短軸長為2,∴,∴,又∵點在C上,∴,∴,∴橢圓C的標準方程為;【小問2詳解】由(1)知,∵當直線l斜率為0時,不符合題意,∴設直線l的方程為:,聯(lián)立,消x得:,∵,∴設,,則,∵,∴,∴,即,解得,∴直線l的方程為:或.20、(1)單調遞增區(qū)間為;單調減區(qū)間為和;(2);.【解析】(1)求出導函數(shù),令,求出單調遞增區(qū)間;令,求出單調遞減區(qū)間.(2)求出函數(shù)的單調區(qū)間,利用函數(shù)的單調性即可求解.【詳解】1函數(shù)的定義域是R,,令,解得令,解得或,所以的單調遞增區(qū)間為,單調減區(qū)間為和;2由在單調遞減,在單調遞增,所以,而,,故最大值是.21、(1);(2)最大值為.【解析】(1)由拋物線焦點與準線的距離即可得解;(2)設,由平面向量的知識可得,進而可得,再由斜率公式及基本不等式即可得解.【詳解】(1)拋物線的焦點,準線方程為,由題意,該拋物線焦點到準線的距離為,所以該拋物線的方程為;(2)[方法一]:軌跡方程+基本不等式法設,則,所以,由在拋物線上可得,即,所以直線的斜率,當時,;當時,,當時,因為,此時,當且僅當,即時,等號成立;當時,;綜上,直線斜率的最大值為.[方法二]:【最優(yōu)解】軌跡方程+數(shù)形結合法同方法一得到點Q的軌跡方程為設直線的方程為,則當直線與拋物線相切時,其斜率k取到最值.聯(lián)立得,其判別式,解得,所以直線斜率的最大值為[方法三]:軌跡方程+換元求最值法同方法一得點Q的軌跡方程為設直線的斜率為k,則令,則的對稱軸為,所以.故直線斜率的最大值為[方法四]參數(shù)+基本不等式法由題可設因,所以于是,所以則直線的斜率為當且僅當,即,時等號成立,所以直線斜率的最大值為【整體點評】方法一根據(jù)向量關系,利用代點法求得Q的軌跡方程,得到直線OQ的斜率關于的表達式,然后利用分類討論,結合基本不等式求得最大值;方法二同方法一得到點Q的軌跡方程,然后利用數(shù)形結合法,利用判別式求得直線OQ的斜率的最大值,為最優(yōu)解;方法三同方法一求得Q的軌跡方程,得到直線的斜率k的平方關于的表達式,利用換元方法轉化為二次函數(shù)求得最大值,進而得到直線斜率的最大值;方法四利用參數(shù)法,由題可設,求得x,y關于的參數(shù)表達式,得到直線的斜率關于的表達式,結合使用基本不等式,求得直線斜率的最大值.22、(1)(2)線段上存在一點,當時,平面.【解析】(1)設點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 終止供應合同的申請書
- 社會困難人員申請書
- 銷售工作調崗降薪申請書
- 教師考核先進個人申請書
- 2025年企業(yè)合同管理與風險控制策略手冊
- 結婚申請書字體要求
- 企業(yè)電信卡業(yè)務申請書
- 競聘駕駛員申請書范文
- 學校供貨商申請書范文
- 會計基礎面試題目及答案
- 船舶棄船應急演練記錄范文
- 武夷山茶山轉讓協(xié)議合同
- 肺結核合并糖尿病的護理查房論文
- 2024-2025學年四川省成都市錦江區(qū)七中學育才學校七年級數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析
- 基于單片機的智能垃圾桶的設計
- 2025秋臨川詩詞學校教師聘用合同
- 垃圾回收協(xié)議合同書
- 安全生產責任制與管理制度
- 陜西省2025屆高考 英語適應性檢測(二) 英語試卷(含解析)
- 室外及綠化工程技術難點及質量控制關鍵點
- 施工合作協(xié)議書
評論
0/150
提交評論