版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河南省上蔡縣第二高級(jí)中學(xué)2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知奇函數(shù),則的解集為()A. B.C. D.2.若等差數(shù)列的前項(xiàng)和為,首項(xiàng),,,則滿足成立的最大正整數(shù)是()A. B.C. D.3.已知雙曲線C的離心率為,,是C的兩個(gè)焦點(diǎn),P為C上一點(diǎn),,若△的面積為,則雙曲線C的實(shí)軸長為()A.1 B.2C.4 D.64.由直線上的點(diǎn)向圓引切線,則切線長的最小值為()A. B.C.4 D.25.圓關(guān)于直線l:對(duì)稱的圓的方程為()A. B.C. D.6.定義域?yàn)榈暮瘮?shù)滿足,且的導(dǎo)函數(shù),則滿足的的集合為A. B.C. D.7.如圖,在平行六面體中,底面是邊長為的正方形,若,且,則的長為()A. B.C. D.8.下列雙曲線中,以為一個(gè)焦點(diǎn),以為一個(gè)頂點(diǎn)的雙曲線方程是()A. B.C. D.9.橢圓的焦點(diǎn)坐標(biāo)是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)10.已知雙曲線的兩個(gè)焦點(diǎn),,是雙曲線上一點(diǎn),且,,則雙曲線的標(biāo)準(zhǔn)方程是()A. B.C. D.11.是等差數(shù)列,,,的第()項(xiàng)A.98 B.99C.100 D.10112.若,,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.寫出一個(gè)離心率且焦點(diǎn)在軸上的雙曲線的標(biāo)準(zhǔn)方程________,并寫出該雙曲線的漸近線方程________14.已知正方體,點(diǎn)在底面內(nèi)運(yùn)動(dòng),且始終保持平面,設(shè)直線與底面所成的角為,則的最大值為______.15.曲線在點(diǎn)(1,1)處的切線方程為_____16.已知數(shù)列前項(xiàng)和為,且,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:經(jīng)過點(diǎn),且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點(diǎn),都有.若存在,求出r的值,并求此時(shí)△AOB的面積S的取值范圍;若不存在,請(qǐng)說明理由18.(12分)某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):x12345678y56.53122.7517.815.9514.51312.5根據(jù)以上數(shù)據(jù)繪制了散點(diǎn)圖觀察散點(diǎn)圖,兩個(gè)變量間關(guān)系考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對(duì)兩個(gè)變量的關(guān)系進(jìn)行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,與x的相關(guān)系數(shù).(1)用反比例函數(shù)模型求y關(guān)于x的回歸方程;(2)用相關(guān)系數(shù)判斷上述兩個(gè)模型哪一個(gè)擬合效果更好(精確到0.001),并用其估計(jì)產(chǎn)量為10千件時(shí)每件產(chǎn)品非原料成本;(3)根據(jù)企業(yè)長期研究表明,非原料成本y服從正態(tài)分布,用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為的估計(jì)值,若非原料成本y在之外,說明該成本異常,并稱落在之外的成本為異樣成本,此時(shí)需尋找出現(xiàn)異樣成本的原因.利用估計(jì)值判斷上述非原料成本數(shù)據(jù)是否需要尋找出現(xiàn)異樣成本的原因?參考數(shù)據(jù)(其中):0.340.1151.531845777.55593.0630.70513.9參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,,相關(guān)系數(shù).19.(12分)已知拋物線:的焦點(diǎn)是圓與軸的一個(gè)交點(diǎn).(1)求拋物線的方程;(2)若過點(diǎn)的直線與拋物線交于不同的兩點(diǎn)A、B,О為坐標(biāo)原點(diǎn),證明:.20.(12分)已知焦點(diǎn)為F的拋物線上一點(diǎn)到F的距離是4(1)求拋物線C的方程(2)若不過原點(diǎn)O的直線l與拋物線C交于A,B兩點(diǎn)(A,B位于x軸兩側(cè)),C的準(zhǔn)線與x軸交于點(diǎn)E,直線與分別交于點(diǎn)M,N,若,證明:直線l過定點(diǎn)21.(12分)如圖,在正四棱柱中,是上的點(diǎn),滿足為等邊三角形.(1)求證:平面;(2)求點(diǎn)到平面的距離.22.(10分)在平面直角坐標(biāo)系中,△的三個(gè)頂點(diǎn)分別是點(diǎn).(1)求△的外接圓O的標(biāo)準(zhǔn)方程;(2)過點(diǎn)作直線平行于直線,判斷直線與圓O的位置關(guān)系,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】先由求出的值,進(jìn)而可得的解析式,對(duì)求導(dǎo),利用基本不等式可判斷恒成立,可判斷的單調(diào)性,根據(jù)單調(diào)性脫掉,再解不等式即可.【詳解】的定義域?yàn)?,因?yàn)槭瞧婧瘮?shù),所以,可得:,所以,經(jīng)檢驗(yàn)是奇函數(shù),符合題意,所以,因?yàn)?,所以,?dāng)且僅當(dāng)即時(shí)等號(hào)成立,所以在上單調(diào)遞增,由可得,即,解得:或,所以的解集為,故選:A.2、B【解析】由等差數(shù)列的,及得數(shù)列是遞減的數(shù)列,因此可確定,然后利用等差數(shù)列的性質(zhì)求前項(xiàng)和,確定和的正負(fù)【詳解】∵,∴和異號(hào),又?jǐn)?shù)列是等差數(shù)列,首項(xiàng),∴是遞減的數(shù)列,,由,所以,,∴滿足的最大自然數(shù)為4040故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題求滿足的最大正整數(shù)的值,關(guān)鍵就是求出,時(shí)成立的的值,解題時(shí)應(yīng)充分利用等差數(shù)列下標(biāo)和的性質(zhì)求解,屬于中檔題.3、C【解析】由已知條件可得,,,再由余弦定理得,進(jìn)而求其正弦值,最后利用三角形面積公式列方程求參數(shù)a,即可知雙曲線C的實(shí)軸長.【詳解】由題意知,點(diǎn)P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實(shí)軸長為,故選:C.4、D【解析】切點(diǎn)與圓心的連線垂直于切線,切線長轉(zhuǎn)化為直線上點(diǎn)與圓心連線和半徑的關(guān)系,利用點(diǎn)到直線的距離公式求出圓心與直線上點(diǎn)距離的最小值,結(jié)合勾股定理即可得出結(jié)果.【詳解】設(shè)為直線上任意一點(diǎn),,切線長的最小值為:,故選:D.5、A【解析】首先求出圓的圓心坐標(biāo)與半徑,再設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)的坐標(biāo)為,即可得到方程組,求出、,即可得到圓心坐標(biāo),從而求出對(duì)稱圓的方程;【詳解】解:圓的圓心為,半徑,設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)的坐標(biāo)為,則,解得,即圓關(guān)于直線對(duì)稱的圓的圓心為,半徑,所以對(duì)稱圓的方程為;故選:A6、B【解析】利用2f(x)<x+1構(gòu)造函數(shù)g(x)=2f(x)-x-1,進(jìn)而可得g′(x)=2f′(x)-1>0.得出g(x)的單調(diào)性結(jié)合g(1)=0即可解出【詳解】令g(x)=2f(x)-x-1.因?yàn)閒′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)單調(diào)增函數(shù)因?yàn)閒(1)=1,所以g(1)=2f(1)-1-1=0.所以當(dāng)x<1時(shí),g(x)<0,即2f(x)<x+1.故選B.【點(diǎn)睛】本題主要考察導(dǎo)數(shù)的運(yùn)算以及構(gòu)造函數(shù)利用其單調(diào)性解不等式.屬于中檔題7、D【解析】由向量線性運(yùn)算得,利用數(shù)量積的定義和運(yùn)算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.8、C【解析】設(shè)出雙曲線方程,根據(jù)題意,求得,即可選擇.【詳解】因?yàn)殡p曲線的一個(gè)焦點(diǎn)是,故可設(shè)雙曲線方程為,且;又為一個(gè)頂點(diǎn),故可得,解得,則雙曲線方程為:.故選:.9、A【解析】根據(jù)橢圓的方程求得的值,進(jìn)而求得橢圓的焦點(diǎn)坐標(biāo),得到答案.【詳解】由橢圓,可得,則,所以橢圓的焦點(diǎn)坐標(biāo)為和.故選:A.10、D【解析】根據(jù)條件設(shè),,由條件求得,即可求得雙曲線方程.【詳解】設(shè),則由已知得,,又,,又,,雙曲線的標(biāo)準(zhǔn)方程為.故選:D11、C【解析】等差數(shù)列,,中,,,由此求出,令,得到是這個(gè)數(shù)列的第100項(xiàng)【詳解】解:等差數(shù)列,,中,,令,得是這個(gè)數(shù)列的第100項(xiàng)故選:C12、A【解析】由于對(duì)數(shù)函數(shù)的存在,故需要對(duì)進(jìn)行放縮,結(jié)合(需證明),可放縮為,利用等號(hào)成立可求出,進(jìn)而得解.【詳解】令,,故在上單調(diào)遞減,在上單調(diào)遞增,,故,即,當(dāng)且僅當(dāng),等號(hào)成立.所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,又,所以,即,所以,又,所以,,故故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.(答案不唯一)②.(答案不唯一)【解析】令雙曲線為,根據(jù)離心率可得,結(jié)合雙曲線參數(shù)關(guān)系寫出一個(gè)符合要求的雙曲線方程,進(jìn)而寫出對(duì)應(yīng)的漸近線方程.【詳解】由題設(shè),可令雙曲線為且,∴,則,故為其中一個(gè)標(biāo)準(zhǔn)方程,此時(shí)漸近線方程為.故答案為:,(答案不唯一).14、【解析】畫出立體圖形,因?yàn)槊婷?在底面內(nèi)運(yùn)動(dòng),且始終保持平面,可得點(diǎn)在線段上運(yùn)動(dòng),因?yàn)槊婷?直線與底面所成的角和直線與底面所成的角相等,即可求得答案.【詳解】連接和,面面在底面內(nèi)運(yùn)動(dòng),且始終保持平面可得點(diǎn)在線段上運(yùn)動(dòng),面面,直線與底面所成的角和直線與底面所成的角相等面直線與底面所成的角為:有圖像可知:長是定值,當(dāng)最短時(shí),,即最大,即角最大設(shè)正方體的邊長為,故故答案為:【點(diǎn)睛】本題考查了求線面角的最大值,解題是掌握線面角的定義和處理動(dòng)點(diǎn)問題時(shí),應(yīng)畫出圖形,尋找?guī)缀侮P(guān)系,考查了分析能力和計(jì)算能力,屬于難題.15、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,再根據(jù)點(diǎn)斜式可求出結(jié)果.【詳解】因?yàn)?,所以曲線在點(diǎn)(1,1)處的切線的斜率為,所以所求切線方程為:,即.故答案為:.16、,.【解析】由的遞推關(guān)系,討論、求及,注意驗(yàn)證是否滿足通項(xiàng),即可寫出的通項(xiàng)公式.【詳解】當(dāng)時(shí),,當(dāng)且時(shí),,而,即也滿足,∴,.故答案為:,.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過點(diǎn)列出方程組,求出,求出橢圓方程;(2)假設(shè)存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達(dá)出△AOB的面積,利用基本不等式求出的取值范圍,進(jìn)而求出△AOB面積的取值范圍.【小問1詳解】因?yàn)闄E圓C:的離心率,且過點(diǎn)所以解得所以橢圓C的方程為【小問2詳解】假設(shè)存在⊙O:滿足題意,①切線方程l的斜率存在時(shí),設(shè)切線方程l:y=kx+m與橢圓方程聯(lián)立,消去y得,(*)設(shè),,由題意知,(*)有兩解所以,即由根與系數(shù)的關(guān)系可得,所以因?yàn)?,所以,即化簡得,且,O到直線l的距離所以,又,此時(shí),所以滿足題意所以存在圓的方程為⊙O:△AOB的面積,又因?yàn)楫?dāng)k≠0時(shí)當(dāng)且僅當(dāng)即時(shí)取等號(hào)又因?yàn)?,所以,所以?dāng)k=0時(shí),②斜率不存在時(shí),直線與橢圓交于兩點(diǎn)或兩點(diǎn)易知存在圓的方程為⊙O:且綜上,所以【點(diǎn)睛】求解圓錐曲線相關(guān)的三角形或四邊形面積取值范圍問題,需要先設(shè)出變量,表達(dá)出面積,利用基本不等式或者配方,導(dǎo)函數(shù)等求出最值,求出取值范圍,特別注意直線斜率存在和不存在的情況,需要分類討論.18、(1)(2)反比例函數(shù)模型擬合效果更好,產(chǎn)量為10千件時(shí)每件產(chǎn)品的非原料成本約為11元,(3)見解析【解析】(1)令,則可轉(zhuǎn)化為,求出樣本中心,回歸方程的斜率,轉(zhuǎn)化求回歸方程即可,(2)求出與的相關(guān)系數(shù),通過比較,可得用反比例函數(shù)模型擬合效果更好,然后將代入回歸方程中可求結(jié)果(3)利用已知數(shù)據(jù)求出樣本標(biāo)準(zhǔn)差s,從而可得非原料成本y服從正態(tài)分布,再計(jì)算,然后各個(gè)數(shù)據(jù)是否在此范圍內(nèi),從而可得結(jié)論【小問1詳解】令,則可轉(zhuǎn)化為,因?yàn)椋?,所以,所以,所以y關(guān)于x的回歸方程為【小問2詳解】與的相關(guān)系數(shù)為因?yàn)?,所以用反比例函?shù)模型擬合效果更好,把代入回歸方程得(元),所以產(chǎn)量為10千件時(shí)每件產(chǎn)品的非原料成本約為11元【小問3詳解】因?yàn)椋?,因?yàn)闃颖緲?biāo)準(zhǔn)差為,所以,所以非原料成本y服從正態(tài)分布,所以因?yàn)樵谥?,所以需要此非原料成本?shù)據(jù)尋找出現(xiàn)異樣成本的原因19、(1)(2)證明見解析【解析】(1)由圓與軸的交點(diǎn)分別為,可得拋物線的焦點(diǎn)為,從而即可求解;(2)設(shè)直線為,聯(lián)立拋物線方程,由韋達(dá)定理及,求出即可得證.【小問1詳解】解:由題意知,圓與軸的交點(diǎn)分別為,則拋物線的焦點(diǎn)為,所以,所以拋物線方程為;【小問2詳解】證明:設(shè)直線為,聯(lián)立方程,有,所以,所以,所以.20、(1);(2)證明過程見解析.【解析】(1)利用拋物線的定義進(jìn)行求解即可;(2)設(shè)出直線l的方程,與拋物線方程聯(lián)立,根據(jù)一元二次方程的根與系數(shù)關(guān)系進(jìn)行求解證明即可.【小問1詳解】該拋物線的準(zhǔn)線方程為,因?yàn)辄c(diǎn)到F的距離是4,所以有,所以拋物線C的方程為:;【小問2詳解】該拋物線的準(zhǔn)線方程為,設(shè)直線l的方程為:,與拋物線方程聯(lián)立,得,不妨設(shè),因此,直線的斜率為:,所以方程為:,當(dāng)時(shí),,即,同理,因?yàn)?,所以有,而,所以有,所以直線l的方程為:,因此直線l恒過.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:把直線l的方程為:,利用一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.21、(1)證明見解析;(2).【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問題;(2)結(jié)合(1),進(jìn)而利用等體積法求得答案.【小問1詳解】由題意,,為等邊三角形,,∵平面ABCD,∴,則,即為中點(diǎn).連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又平面.【小問2詳解】設(shè)M到平面的距離為d,,∴.易得,取BD的中點(diǎn)N,連接,則,所以,,所以,,.即M到平面的距離為1.22、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職運(yùn)動(dòng)與休閑(運(yùn)動(dòng)基礎(chǔ)實(shí)訓(xùn))試題及答案
- 2025年高職第二學(xué)年(機(jī)械設(shè)計(jì)制造及其自動(dòng)化)液壓傳動(dòng)技術(shù)試題及答案
- 2025年大學(xué)第三學(xué)年(酒店運(yùn)營管理)質(zhì)量控制階段測(cè)試題及答案
- 2026年圖書銷售(需求分析)試題及答案
- 2025年高職數(shù)控技術(shù)(數(shù)控技術(shù)專題)試題及答案
- 2025年中職(護(hù)理)急診科護(hù)理基礎(chǔ)試題及答案
- 2025年中職(糧油儲(chǔ)藏與檢測(cè)技術(shù))油脂檢測(cè)分析階段測(cè)試題及答案
- 2025年中職第二學(xué)年(酒店服務(wù))客房管理階段測(cè)試試題及答案
- 2025年高職市政工程施工(市政工程技術(shù))試題及答案
- 2025年高職計(jì)算機(jī)網(wǎng)絡(luò)(網(wǎng)絡(luò)安全)試題及答案
- 2024年佛山市高三一模普通高中教學(xué)質(zhì)量檢測(cè)(一) 物理試卷
- 三年級(jí)教師數(shù)字化教學(xué)能力提升計(jì)劃
- 聯(lián)營餐廳合作協(xié)議
- 2023年重慶市公安局招聘輔警筆試真題
- 高速公路項(xiàng)目竣工決算審計(jì)服務(wù)投標(biāo)方案(技術(shù)方案)
- DB34∕T 3469-2019 高延性混凝土應(yīng)用技術(shù)規(guī)程
- 地面清潔劑產(chǎn)品市場(chǎng)環(huán)境與對(duì)策分析
- 混凝土外加劑試驗(yàn)原始記錄
- 甄嬛傳電子版劇本第01-10集
- 燃?xì)夤こ淌┕ぐ踩嘤?xùn)
- 中藥檢驗(yàn)報(bào)告書書寫格式規(guī)范概要
評(píng)論
0/150
提交評(píng)論