版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省安慶二中2026屆數(shù)學(xué)高一上期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.化簡()A. B.C. D.2.命題“”否定是()A. B.C. D.3.已知點P(3,4)在角的終邊上,則的值為()A B.C. D.4.函數(shù)的零點所在的區(qū)間()A. B.C. D.5.已知函數(shù)的值域為,則實數(shù)m的值為()A.2 B.3C.9 D.276.函數(shù)在單調(diào)遞減,且為奇函數(shù).若,則滿足的的取值范圍是().A. B.C. D.7.已知函數(shù)fx=2x2+bx+c(b,c為實數(shù)),f-10=f12.若方程A.4 B.2C.1 D.18.函數(shù)的圖像可能是().A. B.C. D.9.已知函數(shù),若,則的值為A. B.C.-1 D.110.已知直線與直線平行,則的值為A. B.C.1 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則函數(shù)的最大值是__________12.已知,且,寫出一個滿足條件的的值___________13.已知,若存在定義域為的函數(shù)滿足:對任意,,則___________.14.已知函數(shù)則的值等于____________.15.已知弧長為cm2的弧所對的圓心角為,則這條弧所在的扇形面積為_____cm216.已知函數(shù)=,若對任意的都有成立,則實數(shù)的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的定義域;(2)若,求值;(3)求證:當(dāng)時,18.已知函數(shù),將函數(shù)的圖象向左平移個單位,再向上平移2個單位,得到函數(shù)的圖象.(1)求函數(shù)的解析式;(2)求函數(shù)在上的最大值和最小值.19.年,全世界范圍內(nèi)都受到“新冠”疫情的影響,了解某些細菌、病毒的生存條件、繁殖習(xí)性等對于預(yù)防疾病的傳播、保護環(huán)境有極其重要的意義.某科研團隊在培養(yǎng)基中放入一定量某種細菌進行研究.經(jīng)過分鐘菌落的覆蓋面積為,經(jīng)過分鐘覆蓋面積為,后期其蔓延速度越來越快;現(xiàn)菌落的覆蓋面積(單位:)與經(jīng)過時間(單位:)的關(guān)系有兩個函數(shù)模型與可供選擇.(參考數(shù)據(jù):,,,,,,)(1)試判斷哪個函數(shù)模型更合適,說明理由,并求出該模型的解析式;(2)在理想狀態(tài)下,至少經(jīng)過多久培養(yǎng)基中菌落面積能超過?(結(jié)果保留到整數(shù))20.如圖,正方形的邊長為,,分別為邊和上的點,且的周長為2.(1)求證:;(2)求面積的最小值.21.為適應(yīng)新冠肺炎疫情長期存在的新形勢,打好疫情防控的主動仗,某學(xué)校大力普及科學(xué)防疫知識,現(xiàn)需要在2名女生、3名男生中任選2人擔(dān)任防疫宣講主持人,每位同學(xué)當(dāng)選的機會是相同的.(1)寫出試驗的樣本空間,并求當(dāng)選的2名同學(xué)中恰有1名女生的概率;(2)求當(dāng)選的2名同學(xué)中至少有1名男生的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用輔助角公式化簡即可.【詳解】.故選:D2、A【解析】根據(jù)全稱命題的否定為特稱命題,即可得到答案【詳解】全稱命題的否定為特稱命題,命題“”的否定是,故選:A3、D【解析】利用三角函數(shù)的定義即可求出答案.【詳解】因為點P(3,4)在角的終邊上,所以,,故選:D【點睛】本題考查了三角函數(shù)的定義,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.4、B【解析】,,零點定理知,的零點在區(qū)間上所以選項是正確的5、C【解析】根據(jù)對數(shù)型復(fù)合函數(shù)的性質(zhì)計算可得;【詳解】解:因為函數(shù)的值域為,所以的最小值為,所以;故選:C6、D【解析】由已知中函數(shù)的單調(diào)性及奇偶性,可將不等式化為,解得答案【詳解】解:由函數(shù)為奇函數(shù),得,不等式即為,又單調(diào)遞減,所以得,即,故選:D.7、B【解析】由f-10=f12求得b=-4,再由方程fx=0有兩個正實數(shù)根x1【詳解】因為函數(shù)fx=2x2+bx+c(b所以200-10b+c=288+12b+c,解得b=-4,所以fx因為方程fx=0有兩個正實數(shù)根x1所以Δ=16-8c≥0解得0<c≤2,所以1x當(dāng)c=2時,等號成立,所以其最小值是2,故選:B8、D【解析】∵,∴,∴函數(shù)需向下平移個單位,不過(0,1)點,所以排除A,當(dāng)時,∴,所以排除B,當(dāng)時,∴,所以排除C,故選D.考點:函數(shù)圖象的平移.9、D【解析】,選D點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)的形式時,應(yīng)從內(nèi)到外依次求值.(2)求某條件下自變量的值,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.10、D【解析】由題意可得:,解得故選二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由函數(shù)變形為,再由基本不等式求得,從而有,即可得到答案.【詳解】∵函數(shù)∴由基本不等式得,當(dāng)且僅當(dāng),即時取等號.∴函數(shù)的最大值是故答案為.【點睛】本題主要考查線性規(guī)劃的應(yīng)用以及基本不等式的應(yīng)用,.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內(nèi),二是多次用或時等號能否同時成立).12、π(答案不唯一)【解析】利用,可得,又,確定可得結(jié)果.【詳解】因為,所以,,則,或,,又,故滿足要求故答案為:π(答案不唯一)13、-2【解析】由已知可得為偶函數(shù),即,令,由,可得,計算即可得解.【詳解】對任意,,將函數(shù)向左平移2個單位得到,函數(shù)為偶函數(shù),所以,令,由,可得,解得:.故答案為:.14、18【解析】根據(jù)分段函數(shù)定義計算【詳解】故答案為:1815、【解析】先求出半徑,再用扇形面積公式求解即可.【詳解】由已知半徑為,則這條弧所在的扇形面積為.故答案為:.16、【解析】轉(zhuǎn)化為對任意的都有,再分類討論求出最值,代入解不等式即可得解.【詳解】因為=,所以等價于,等價于,所以對任意的都有成立,等價于,(1)當(dāng),即時,在上為減函數(shù),,在上為減函數(shù),,所以,解得,結(jié)合可得.(2)當(dāng),即時,在上為減函數(shù),,在上為減函數(shù),在上為增函數(shù),或,所以且,解得.(3)當(dāng),即時,,在上為減函數(shù),,在上為增函數(shù),,所以,解得,結(jié)合可知,不合題意.(4)當(dāng),即時,在上為減函數(shù),在上為增函數(shù),,在上為增函數(shù),,此時不成立.(5)當(dāng)時,在上為增函數(shù),,在上為增函數(shù),,所以,解得,結(jié)合可知,不合題意.綜上所述:.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)證明見解析.【解析】(1)利用真數(shù)大于零列出不等式組,其解為,它是函數(shù)的定義域.(2)把方程化為后得到,故.(3)分別計算就能得到.解析:(1)由,得函數(shù)的定義域為.(2),即,∴,∴且,∴.(3)∵,,∴時,,又∵,∴.18、(1)(2)見解析【解析】(1)首先化簡三角函數(shù)式,然后確定平移變換之后的函數(shù)解析式即可;(2)結(jié)合(1)中函數(shù)解析式確定函數(shù)的最大值即可.【詳解】(1).由題意得,化簡得.(2)∵,可得,∴.當(dāng)時,函數(shù)有最大值1;當(dāng)時,函數(shù)有最小值.【點睛】本題主要考查三角函數(shù)圖像的變換,三角函數(shù)最值的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.19、(1)應(yīng)選模型為,理由見解析;(2)【解析】(1)根據(jù)增長速度可知應(yīng)選,根據(jù)已知數(shù)據(jù)可構(gòu)造方程組求得,進而得到函數(shù)模型;(2)根據(jù)函數(shù)模型可直接構(gòu)造不等式,結(jié)合參考數(shù)據(jù)計算可得,由此可得結(jié)論.小問1詳解】的增長速度越來越快,的增長速度越來越慢,應(yīng)選模型為;則,解得:,,又,函數(shù)模型為;【小問2詳解】由題意得:,即,,,,至少經(jīng)過培養(yǎng)基中菌落面積能超過.20、(1)證明見解析;(2).【解析】(1)補形得證明其與全等,從而得證.(2)引進參數(shù),由已知建立參數(shù)變量之間的等量關(guān)系,再用方程根的判別式獲得變量最值,進一步得到所求面積最值.【詳解】(1)如圖:延長至,使,連接,則.故,,.又.,即.(2)設(shè),,,則,,,于是,整理得:,.即.又,,當(dāng)且僅當(dāng)時等式成立.此時,因此當(dāng),時,取最小值.的最小值為.【點睛】方法點睛:引進參數(shù)建立參變量方程,再變換主次元,利用方程根的判別式,確定參數(shù)取值范圍是求最值的方法之一.21、(1)樣本空間答案見解析,概率是(2)【解析】(1)將2名女生,3名男生分別用a,b;c,d,e表示,即可列出樣本空間,再根據(jù)古典概型的概率公式計算可得;(2)設(shè)事件“當(dāng)選的2名同學(xué)中至少有1名男生”,事件“當(dāng)選的2名同學(xué)中全部都是女生”,事件B,C為對立事件,利用古典概型的概率公式求出,最后根據(jù)對立事件的概率公式計算可得;【小問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年衰老干預(yù)項目可行性研究報告
- 2026年智能售酒機項目公司成立分析報告
- 教職工績效考核制度
- 精通MySQL數(shù)據(jù)庫性能優(yōu)化
- 教師職稱評審與職務(wù)聘任規(guī)定制度
- 幼兒院幼兒教育與幼兒道德教育制度
- 4歲游泳課程設(shè)計片
- 小學(xué)生校園文明禮儀制度
- 愛國主題課程設(shè)計背景
- 2026湖南長沙市雨花區(qū)中雅培粹雙語中學(xué)合同制教師招聘筆試模擬試題及答案解析
- 2026年中國航空傳媒有限責(zé)任公司市場化人才招聘備考題庫有答案詳解
- 2026年《全科》住院醫(yī)師規(guī)范化培訓(xùn)結(jié)業(yè)理論考試題庫及答案
- 2026北京大興初二上學(xué)期期末語文試卷和答案
- 專題23 廣東省深圳市高三一模語文試題(學(xué)生版)
- 2026年時事政治測試題庫100道含完整答案(必刷)
- 重力式擋土墻施工安全措施
- 葫蘆島事業(yè)單位筆試真題2025年附答案
- 2026年公平競爭審查知識競賽考試題庫及答案(一)
- 置業(yè)顧問2025年度工作總結(jié)及2026年工作計劃
- 金華市軌道交通控股集團有限公司招聘筆試題庫2026
- 2023屆廣東省佛山市普通高中高三上學(xué)期教學(xué)質(zhì)量檢測(一模)物理試題含答案
評論
0/150
提交評論