2026屆海東市重點中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
2026屆海東市重點中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
2026屆海東市重點中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
2026屆海東市重點中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
2026屆海東市重點中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆海東市重點中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.?dāng)?shù)列1,6,15,28,45,…中的每一項都可用如圖所示的六邊形表示出米,故稱它們?yōu)榱呅螖?shù),那么第11個六邊形數(shù)為()A.153 B.190C.231 D.2762.已知{}為等比數(shù)列.,則=()A.—4 B.4C.—4或4 D.163.設(shè)、分別為具有公共焦點與的橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為()A. B.C. D.4.已知圓與直線,則圓上到直線的距離為1的點的個數(shù)是()A.1 B.2C.3 D.45.與的等差中項是()A. B.C. D.6.已知f(x)是定義在R上的偶函數(shù),當(dāng)時,,且f(-1)=0,則不等式的解集是()A. B.C. D.7.在中,內(nèi)角的對邊分別為,若,則角為A. B.C. D.8.?dāng)?shù)列,,,,…的一個通項公式為()A. B.C. D.9.已知點為直線上任意一點,為坐標(biāo)原點.則以為直徑的圓除過定點外還過定點()A. B.C. D.10.已知直線與平行,則系數(shù)()A. B.C. D.11.橢圓()的右頂點是拋物線的焦點,且短軸長為2,則該橢圓方程為()A. B.C. D.12.已知點,,,動點P滿足,則的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校共有學(xué)生480人;現(xiàn)采用分層抽樣的方法從中抽取80人進(jìn)行體能測試;若這80人中有30人是男生,則該校女生共有___________.14.已知拋物線的焦點坐標(biāo)為,則該拋物線上一點到焦點的距離的取值范圍是___________.15.已知的頂點A(1,5),邊AB上的中線CM所在的直線方程為,邊AC上的高BH所在直線方程為,求(1)頂點C的坐標(biāo);(2)直線BC的方程;16.已知圓柱軸截面是邊長為4的正方形,則圓柱的側(cè)面積為______________

.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖在直三棱柱中,為的中點,為的中點,是中點,是與的交點,是與的交點.(1)求證:;(2)求證:平面;(3)求直線與平面的距離.18.(12分)在等差數(shù)列中,,.(1)求數(shù)列通項公式;(2)若,求數(shù)列的前項和.19.(12分)已知橢圓的離心率為,橢圓過點.(1)求橢圓C的方程;(2)過點的直線交橢圓于M、N兩點,已知直線MA,NA分別交直線于點P,Q,求的值.20.(12分)已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,,,△ABC的面積為(1)求a;(2)若D為BC邊上一點,且∠BAD=,求∠ADC的正弦值21.(12分)已知向量,.(1)計算和;(2)求.22.(10分)已知,:,:.(1)若,為真命題,為假命題,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】細(xì)心觀察,尋求相鄰項及項與序號之間的關(guān)系,同時聯(lián)系相關(guān)知識,如等差數(shù)列、等比數(shù)列等,結(jié)合圖形即可求解.【詳解】由題意知,數(shù)列的各項為1,6,15,28,45,...所以,,,,,,所以.故選:C2、B【解析】根據(jù)題意先求出公比,進(jìn)而用等比數(shù)列通項公式求得答案.【詳解】由題意,設(shè)公比為q,則,則.故選:B.3、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,不妨設(shè),利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,不妨設(shè),由橢圓和雙曲線的定義可得,所以,,設(shè),因為,則,由勾股定理得,即,整理得,故.故選:A.4、B【解析】根據(jù)圓心到直線的距離即可判斷.【詳解】由得,則圓的圓心為,半徑,由,則圓心到直線的距離,∵,∴在圓上到直線距離為1的點有兩個.故選:B.5、A【解析】代入等差中項公式即可解決.【詳解】與的等差中項是故選:A6、D【解析】根據(jù)題意可知,當(dāng)時,,即函數(shù)在上單調(diào)遞增,再結(jié)合函數(shù)f(x)的奇偶性得到函數(shù)的奇偶性,并根據(jù)奇偶性得到單調(diào)性,進(jìn)而解得答案.【詳解】由題意,當(dāng)時,,則函數(shù)在上單調(diào)遞增,而f(x)是定義在R上的偶函數(shù),容易判斷是定義在上的奇函數(shù),于是在上單調(diào)遞增,而f(-1)=0,則.于是當(dāng)時,.故選:D.7、A【解析】因為,那么結(jié)合,所以cosA==,所以A=,故答案為A考點:正弦定理與余弦定理點評:本題主要考查正弦定理與余弦定理的基本應(yīng)用,屬于中等題.8、B【解析】根據(jù)給定數(shù)列,結(jié)合選項提供通項公式,將n代入驗證法判斷是否為通項公式.【詳解】A:時,排除;B:數(shù)列,,,,…滿足.C:時,排除;D:時,排除;故選:B9、D【解析】設(shè)垂直于直線,可知圓恒過垂足;兩條直線方程聯(lián)立可求得點坐標(biāo).【詳解】設(shè)垂直于直線,垂足為,則直線方程為:,由圓的性質(zhì)可知:以為直徑的圓恒過點,由得:,以為直徑的圓恒過定點.故選:D.10、B【解析】由直線的平行關(guān)系可得,解之可得【詳解】解:直線與直線平行,,解得故選:11、A【解析】求得拋物線的焦點從而求得,再結(jié)合題意求得,即可寫出橢圓方程.【詳解】因為拋物線的焦點坐標(biāo)為,故可得;又短軸長為2,故可得,即;故橢圓方程為:.故選:.12、C【解析】由題設(shè)分析知的軌跡為(不與重合),要求的取值范圍,只需求出到圓上點的距離范圍即可.【詳解】由題設(shè),在以為直徑的圓上,令,則(不與重合),所以的取值范圍,即為到圓上點的距離范圍,又圓心到的距離,圓的半徑為2,所以的取值范圍為,即.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、人##300【解析】根據(jù)人數(shù)占比直接計算即可.【詳解】該校女生共有人.故答案為:人.14、【解析】根據(jù)題意,求得,得到焦點坐標(biāo),結(jié)合拋物線的定義,得到,根據(jù),求得,即可求解.【詳解】由拋物線的焦點坐標(biāo)為,可得,解得,設(shè)拋物線上的任意一點為,焦點為,由拋物線的定義可得,因為,所以,所以拋物線上一點到焦點的距離的取值范圍是.故答案為:.15、(1);(2).【解析】(1)設(shè)出點C的坐標(biāo),進(jìn)而根據(jù)點C在中線上及求得答案;(2)設(shè)出點B的坐標(biāo),進(jìn)而求出點M的坐標(biāo),然后根據(jù)中線的方程及求出點B的坐標(biāo),進(jìn)而求出直線BC的方程.【小問1詳解】設(shè)C點的坐標(biāo)為,則由題知,即.【小問2詳解】設(shè)B點的坐標(biāo)為,則中點M坐標(biāo)代入中線CM方程則由題知,即,又,則,所以直線BC方程為.16、【解析】由圓柱軸截面的性質(zhì)知:圓柱體的高為,底面半徑為,根據(jù)圓柱體的側(cè)面積公式,即可求其側(cè)面積.【詳解】由圓柱的軸截面是邊長為4的正方形,∴圓柱體的高為,底面半徑為,∴圓柱的側(cè)面積為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析(3)【解析】(1)法一:通過建立空間直角坐標(biāo)系,運用向量數(shù)量積證明,法二:通過線面垂直證明,法三:根據(jù)三垂線證明;(2)法一:通過建立空間直角坐標(biāo)系,運用向量數(shù)量積證明,法二:通過面面平行證明線面平行;(3)法一:通過建立空間直角坐標(biāo)系,運用向量方法求解,法二:運用等體積法求解.【小問1詳解】證明:法一:在直三棱柱中,因為,以點為坐標(biāo)原點,方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系.因為,所以,所以所以,所以.法二:連接,在直三棱柱中,有面,面,所以,又,則,因為,所以面因為面,所以因為,所以四邊形為正方形,所以因為,所以面因為面,所以.法三:用三垂線定理證明:連接,在直三棱柱中,有面因為面,所以,又,則,因為,所以面所以在平面內(nèi)的射影為,因為四邊形為正方形,所以,因此根據(jù)三垂線定理可知【小問2詳解】證明:法一:因為為的中點,為的中點,為中點,是與的交點,所以、,依題意可知為重心,則,可得所以,,設(shè)為平面的法向量,則即取得則平面的一個法向量為.所以,則,因為平面,所以平面.法二:連接.在正方形中,為的中點,所以且,所以四邊形是平行四邊形,所以又為中點,所以四邊形是矩形,所以且因為且,所以,所以四邊形為平行四邊形,所以.因為,平面平面平面平面,所以平面平面,平面,所以平面【小問3詳解】法一:由(2)知平面的一個法向量,且平面,所以到平面的距離與到平面的距離相等,,所以,所以點到平面的距離所以到平面的距離為法二:因為分別為和中點,所以為的重心,所以,所以到平面的距離是到平面距離的.取中點則,又平面平面,所以平面,所以到平面的距離與到平面的距離相等.設(shè)點到平面的距離為,由得,又,所以,所以到平面的距離是,所以到平面的距離為.18、(1);(2).【解析】(1)利用等差數(shù)列的基本量,根據(jù)題意,列出方程,即可求得公差以及通項公式;(2)根據(jù)(1)中所求,結(jié)合等差數(shù)列的前項和的公式,求得,以及,再利用等比數(shù)列的前項和公式求得.【小問1詳解】因為,所以,故可得,所以.【小問2詳解】因為,所以.于是,令,則.顯然數(shù)列是等比數(shù)列,且,公比,所以數(shù)列的前n項和.19、(1)(2)1【解析】(1)由題意得到關(guān)于a,b的方程組,求解方程組即可確定橢圓方程;(2)首先聯(lián)立直線與橢圓的方程,然后由直線MA,NA的方程確定點P,Q的縱坐標(biāo),將線段長度的比值轉(zhuǎn)化為縱坐標(biāo)比值的問題,進(jìn)一步結(jié)合韋達(dá)定理可證得,從而可得兩線段長度的比值.【小問1詳解】由題意,點橢圓上,有,解得故橢圓C的方程為.【小問2詳解】當(dāng)直線l的斜率不存在時,顯然不符;當(dāng)直線l的斜率存在時,設(shè)直線l為:聯(lián)立方程得:由,設(shè),有又由直線AM:,令x=-4得,將代入得:,同理得:.很明顯,且,注意到,,而,故所以.【點睛】本題考查求橢圓的方程,解題關(guān)鍵是利用離心率與橢圓上的點,找到關(guān)于a,b,c的等量關(guān)系求解a與b.本題中直線方程代入橢圓方程整理后應(yīng)用韋達(dá)定理求出,.表示出,,然后轉(zhuǎn)化為相應(yīng)的比值關(guān)系.考查了學(xué)生的運算求解能力,邏輯推理能力.屬于中檔題20、(1)(2)【解析】(1)利用面積公式及余弦定理可求解;(2)由正弦定理得到,再運用同角函數(shù)的關(guān)系得到,最后運用正弦的兩角和公式求解即可.【小問1詳解】∵,,,∴由余弦定理:,∴【小問2詳解】在中,由正弦定理得,∴,易知B為銳角,∴,∴21、(1),;(2).【解析】(1)利用空間向量的坐標(biāo)運算可求得的坐標(biāo),利用向量的模長公式可求得的值;(2)計算出,結(jié)合的取值范圍可求得結(jié)果.【詳解】(1),;(2),,因此,.【點睛】本題考查空間向量的坐標(biāo)運算,同時也考查了利用空間向量的數(shù)量積計算向

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論