安徽省池州市東至二中2026屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
安徽省池州市東至二中2026屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
安徽省池州市東至二中2026屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
安徽省池州市東至二中2026屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
安徽省池州市東至二中2026屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省池州市東至二中2026屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.“”是“”的()A.充分必要條件 B.充分而不必要條件C.必要而不充分條件 D.既不充分也不必要條件2.已知函數(shù),若關(guān)于的方程有8個不等的實數(shù)根,則的取值范圍是A. B.C. D.3.下列四個函數(shù),以為最小正周期,且在區(qū)間上單調(diào)遞減的是()A. B.C. D.4.已知,,,則a,b,c三個數(shù)的大小關(guān)系是()A. B.C. D.5.已知函數(shù),若函數(shù)在上有兩個零點,則的取值范圍是()A. B.C. D.,6.已知函數(shù),若,,,則()A. B.C. D.7.若指數(shù)函數(shù),則有()A.或 B.C. D.且8.如果且,那么直線不經(jīng)過()A第一象限 B.第二象限C.第三象限 D.第四象限9.若是的重心,且(,為實數(shù)),則()A. B.1C. D.10.已知,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小值為_______12.已知向量,,若,,,則的值為__________13.cos(-225°)=______14.若將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,則的最小值為______15.函數(shù)的圖象一定過定點,則點的坐標(biāo)是________.16.已知扇形的弧長為6,圓心角弧度數(shù)為2,則其面積為______________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱錐中,平面平面為等邊三角形,且分別為的中點(1)求證:平面;(2)求證:平面平面;18.根據(jù)下列條件,求直線的方程(1)求與直線3x+4y+1=0平行,且過點(1,2)的直線l的方程.(2)過兩直線3x-2y+1=0和x+3y+4=0的交點,且垂直于直線x+3y+4=0.19.已知函數(shù)的部分圖象如下圖所示.(1)求函數(shù)解析式,并寫出函數(shù)的單調(diào)遞增區(qū)間;(2)將函數(shù)圖象上所有點的橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再將所得的函數(shù)圖象上所有點向左平移個單位長度,得到函數(shù)的圖象.若函數(shù)的圖象關(guān)于直線對稱,求函數(shù)在區(qū)間上的值域.20.已知關(guān)于x的不等式的解集為R,記實數(shù)a的所有取值構(gòu)成的集合為M.(1)求M;(2)若,對,有,求t的最小值.21.已知函數(shù),,其中(1)寫出的單調(diào)區(qū)間(無需證明);(2)求在區(qū)間上的最小值;(3)若對任意,均存在,使得成立,求實數(shù)的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由等價于,或,再根據(jù)充分、必要條件的概念,即可得到結(jié)果.【詳解】因為,所以,或,所以“”是“”的充分而不必要條件.故選:B.2、D【解析】畫出函數(shù)的圖象,利用函數(shù)的圖象,判斷的范圍,然后利用二次函數(shù)的性質(zhì)求解的范圍【詳解】解:函數(shù),的圖象如圖:關(guān)于的方程有8個不等的實數(shù)根,必須有兩個不相等的實數(shù)根且兩根位于之間,由函數(shù)圖象可知,.令,方程化為:,,,開口向下,對稱軸為:,可知:的最大值為:,的最小值為:2故選:【點睛】本題考查函數(shù)與方程的應(yīng)用,函數(shù)的零點個數(shù)的判斷與應(yīng)用,考查數(shù)形結(jié)合以及計算能力,屬于中檔題3、A【解析】先判斷各函數(shù)最小正周期,再確定各函數(shù)在區(qū)間上單調(diào)性,即可選擇判斷.【詳解】最小正周期為,在區(qū)間上單調(diào)遞減;最小正周期為,在區(qū)間上單調(diào)遞減;最小正周期為,在區(qū)間上單調(diào)遞增;最小正周期為,在區(qū)間上單調(diào)遞增;故選:A4、A【解析】利用指數(shù)函數(shù)的單調(diào)性比較的大小,再用作中間量可比較出結(jié)果.【詳解】因為指數(shù)函數(shù)為遞減函數(shù),且,所以,所以,因為,,所以,綜上所述:.故選:A5、D【解析】根據(jù)時,一定有一個零點,故只需在時有一個零點即可,列出不等式求解即可.【詳解】當(dāng)時,令,即可得,;故在時,一定有一個零點;要滿足題意,顯然,令,解得只需,解得.故選:D【點睛】本題考查由函數(shù)的零點個數(shù)求參數(shù)范圍,涉及對數(shù)不等式的求解,屬綜合基礎(chǔ)題.6、A【解析】可判斷在單調(diào)遞增,根據(jù)單調(diào)性即可判斷.【詳解】當(dāng)時,單調(diào)遞增,,,,.故選:A.7、C【解析】根據(jù)指數(shù)函數(shù)的概念,由所給解析式,可直接求解.【詳解】因為是指數(shù)函數(shù),所以,解得.故選:C8、C【解析】由條件可得直線的斜率的正負(fù),直線在軸上的截距的正負(fù),進(jìn)而可得直線不經(jīng)過的象限【詳解】解:由且,可得直線斜率為,直線在y軸上的截距,故直線不經(jīng)過第三象限,故選C【點睛】本題主要考查確定直線位置的幾何要素,屬于基礎(chǔ)題9、A【解析】若與邊的交點為,再由三角形中線的向量表示即可.【詳解】若與邊交點為,則為邊上的中線,所以,又因為,所以故選:A【點睛】此題為基礎(chǔ)題,考查向量的線性運(yùn)算.10、D【解析】先求出,再分子分母同除以余弦的平方,得到關(guān)于正切的關(guān)系式,代入求值.【詳解】由得,,所以故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)正弦型函數(shù)的性質(zhì)求的最小值.【詳解】由正弦型函數(shù)的性質(zhì)知:,∴的最小值為.故答案為:.12、C【解析】分析:由,,,可得向量與平行,且,從而可得結(jié)果.詳解:∵,,,∴向量與平行,且,∴.故答案為.點睛:本題主要考查共線向量的坐標(biāo)運(yùn)算,平面向量的數(shù)量積公式,意在考查對基本概念的理解與應(yīng)用,屬于中檔題13、【解析】直接利用誘導(dǎo)公式求知【詳解】【點睛】本題考查利用誘導(dǎo)公式求知,一般按照以下幾個步驟:負(fù)化正,大化小,劃到銳角為終了同時在轉(zhuǎn)化時需注意“奇變偶不變,符號看象限.”14、;【解析】因為函數(shù)的圖象向左平移個單位長度,得到,所以的最小值為15、【解析】令,得,再求出即可得解.【詳解】令,得,,所以點的坐標(biāo)是.故答案:16、9【解析】根據(jù)扇形的弧長是6,圓心角為2,先求得半徑,再代入公式求解.【詳解】因為扇形的弧長是6,圓心角為2,所以,所以扇形的面積為,故答案為:9.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)因為分別為的中點,所以,由線面平行的判定定理,即可得到平面;(2)因為為的中點,得到,利用面面垂直的性質(zhì)定理可證得平面,由面面垂直的判定定理,即可得到平面平面【詳解】(1)因為、分別為、的中點,所以.又因為平面,所以平面;(2)因為,為的中點,所以,又因為平面平面,平面平面,且平面,所以平面,平面,平面平面.【點睛】本題考查線面位置關(guān)系的判定與證明,熟練掌握空間中線面位置關(guān)系的判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直18、(1)3x+4y-11=0(2)3x-y+2=0【解析】(1)設(shè)與直線平行的直線為,把點代入,解得即可;(2)由,解得兩直線的交點坐標(biāo)為,結(jié)合所求直線垂直于直線,可得所求直線斜率,利用點斜式即可得出.【詳解】(1)由題意,設(shè)l的方程為3x+4y+m=0,將點(1,2)代入l的方程3+4×2+m=0,得m=-11,∴直線l的方程為3x+4y-11=0;(2)由,解得,兩直線的交點坐標(biāo)為,因為直線的斜率為所求直線垂直于直線,所求直線斜率,所求直線方程為,化為.【點睛】本題主要考查直線的方程,兩條直線平行、垂直與斜率的關(guān)系,屬于中檔題.對直線位置關(guān)系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1);(2).19、(1),遞增區(qū)間為;(2).【解析】(1)由三角函數(shù)的圖象,求得函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì),即可求解.(2)由三角函數(shù)的圖象變換,求得,根據(jù)的圖象關(guān)于直線對稱,求得的值,得到,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由圖象可知,,所以,所以,由圖可求出最低點的坐標(biāo)為,所以,所以,所以,因為,所以,所以,由,可得.所以函數(shù)的單調(diào)遞增區(qū)間為.(2)由題意知,函數(shù),因為的圖象關(guān)于直線對稱,所以,即,因為,所以,所以.當(dāng)時,,可得,所以,即函數(shù)的值域為.【點睛】解答三角函數(shù)的圖象與性質(zhì)的基本方法:1、根據(jù)已知條件化簡得出三角函數(shù)的解析式為的形式;2、熟練應(yīng)用三角函數(shù)的圖象與性質(zhì),結(jié)合數(shù)形結(jié)合法的思想研究函數(shù)的性質(zhì)(如:單調(diào)性、奇偶性、對稱性、周期性與最值等),進(jìn)而加深理解函數(shù)的極值點、最值點、零點及有界性等概念與性質(zhì),但解答中主要角的范圍的判定,防止錯解.20、(1)(2)1【解析】(1)分類討論即可求得實數(shù)a的所有取值構(gòu)成的集合M;(2)先求得的最大值2,再解不等式即可求得t的最小值.【小問1詳解】當(dāng)時,滿足題意;當(dāng)時,要使不等式的解集為R,必須,解得,綜上可知,所以【小問2詳解】∵,∴,∴,(當(dāng)且僅當(dāng)時取“=”)∴,∵,有,∴,∴,∴或,又,∴,∴t的最小值為1.21、(1)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是(2)(3)【解析】(1)利用去掉絕對值及一次函數(shù)的性質(zhì)即可求解;(2)根據(jù)(1)的結(jié)論,利用單調(diào)性與最值的關(guān)系即可求解;(3)根據(jù)已知條件將問題轉(zhuǎn)化為,再利用函數(shù)的單調(diào)性與最值的關(guān)系,分情況討論即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論