重慶市第四十二中學2026屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第1頁
重慶市第四十二中學2026屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第2頁
重慶市第四十二中學2026屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第3頁
重慶市第四十二中學2026屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第4頁
重慶市第四十二中學2026屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市第四十二中學2026屆高一數(shù)學第一學期期末聯(lián)考模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.四面體中,各個側面都是邊長為的正三角形,分別是和的中點,則異面直線與所成的角等于()A.30° B.45°C.60° D.90°2.()A. B.C. D.13.函數(shù)的零點所在的區(qū)間為A B.C. D.4.三個數(shù)20.3,0.32,log0.32的大小順序是A.0.32<log0.32<20.3 B.0.32<20.3<log0.32C.log0.32<20.3<0.32 D.log0.32<0.32<20.35.如圖,AB為半圓的直徑,點C為的中點,點M為線段AB上的一點(含端點A,B),若,則的取值范圍是()A. B.C. D.6.已知函數(shù)在上是增函數(shù),則的取值范圍是()A., B.,C., D.,7.命題“x0,x2x0”的否定是()A.x0,x2x0 B.x0,x2x0C.x0,x2x0 D.x0,x2x08.若冪函數(shù)的圖像經過點,則A.1 B.2C.3 D.49.已知,,,則的大小關系是()A. B.C. D.10.已知冪函數(shù)的圖象過(4,2)點,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11._____.12.已知表示這個數(shù)中最大的數(shù).能夠說明“對任意,都有”是假命題的一組整數(shù)的值依次可以為_____13.已知函數(shù),若在區(qū)間上的最大值是,則_______;若在區(qū)間上單調遞增,則的取值范圍是___________14.設角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若角的終邊上一點的坐標為,則的值為__________15.無論實數(shù)k取何值,直線kx-y+2+2k=0恒過定點__16.已知,則的值為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在平面直角坐標系中,銳角的頂點是坐標原點O,始邊為x軸的非負半軸,終邊上有一點(1)求的值;(2)若,且,求角的值18.已知函數(shù)⑴判斷并證明函數(shù)的奇偶性;⑵若,求實數(shù)的值.19.某農戶利用墻角線互相垂直的兩面墻,將一塊可折疊的長為am的籬笆墻圍成一個雞圈,籬笆的兩個端點A,B分別在這兩墻角線上,現(xiàn)有三種方案:方案甲:如圖1,圍成區(qū)域為三角形;方案乙:如圖2,圍成區(qū)域為矩形;方案丙:如圖3,圍成區(qū)域為梯形,且.(1)在方案乙、丙中,設,分別用x表示圍成區(qū)域的面積,;(2)為使圍成雞圈面積最大,該農戶應該選擇哪一種方案,并說明理由.20.已知集合,集合,集合.(1)求;(2)若,求實數(shù)a的取值范圍.21.如圖,已知四棱柱的底面是菱形,側棱底面,是的中點,,.(1)證明:平面;(2)求直線與平面所成的角的正弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】利用中位線定理可得GE∥SA,則∠GEF為異面直線EF與SA所成的角,判斷三角形為等腰直角三角形即可.【詳解】取AC中點G,連接EG,GF,F(xiàn)C設棱長為2,則CF=,而CE=1∴EF=,GE=1,GF=1而GE∥SA,∴∠GEF為異面直線EF與SA所成的角∵EF=,GE=1,GF=1∴△GEF為等腰直角三角形,故∠GEF=45°故選:B.【點睛】求異面直線所成的角先要利用三角形中位線定理以及平行四邊形找到異面直線所成的角,然后利用直角三角形的性質及余弦定理求解,如果利用余弦定理求余弦,因為異面直線所成的角是直角或銳角,所以最后結果一定要取絕對值.2、B【解析】先利用誘導公式把化成,就把原式化成了兩角和余弦公式,解之即可.【詳解】由可知,故選:B3、B【解析】根據(jù)零點的存在性定理,依次判斷四個選項的區(qū)間中是否存在零點【詳解】,,,由零點的存在性定理,函數(shù)在區(qū)間內有零點,選擇B【點睛】用零點的存在性定理只能判斷函數(shù)有零點,若要判斷有幾個零點需結合函數(shù)的單調性判斷4、D【解析】由已知得:,,,所以.故選D.考點:指數(shù)函數(shù)和對數(shù)函數(shù)的圖像和性質.5、D【解析】根據(jù)題意可得出,然后根據(jù)向量的運算得出,從而可求出答案.【詳解】因為點C為的中點,,所以,所以,因為點M為線段AB上的一點,所以,所以,所以的取值范圍是,故選:D.6、D【解析】先根據(jù)題意建立不等式組,再求解出,最后給出選項即可.【詳解】解:因為函數(shù)在上是增函數(shù),所以,解得,則故選:D.【點睛】本題考查利用分段函數(shù)的單調性求參數(shù)范圍,是基礎題7、B【解析】根據(jù)含有一個量詞命題否定的定義,即可得答案.【詳解】命題“x0,x2x0”的否定是:“x0,x2x0”.故選:B8、B【解析】由題意可設,將點代入可得,則,故選B.9、A【解析】利用對數(shù)函數(shù)和指數(shù)函數(shù)的性質求解【詳解】解:∵,∴,∵,∴,∵,∴,即,∴故選:A10、A【解析】詳解】由題意可設,又函數(shù)圖象過定點(4,2),,,從而可知,則.故選A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用誘導公式變形,再由兩角和的余弦求解【詳解】解:,故答案為【點睛】本題考查誘導公式的應用,考查兩角和的余弦,是基礎題12、(答案不唯一)【解析】首先利用新定義,再列舉命題為假命題的一組數(shù)值,再根據(jù)定義,驗證命題是假命題.【詳解】設,,則,而,,故命題為假命題,故依次可以為故答案為:(答案不唯一)13、①.②.【解析】根據(jù)定義域得,再得到取最大值的條件求解即可;先得到一般性的單調增區(qū)間,再根據(jù)集合之間的關系求解.【詳解】因為,且在此區(qū)間上的最大值是,所以因為f(x)max=2tan=,所以tan==,即ω=由,得令,得,即在區(qū)間上單調遞增又因在區(qū)間上單調遞增,所以<,即所以的取值范圍是故答案為:1,14、##0.5【解析】利用余弦函數(shù)的定義即得.【詳解】∵角的終邊上一點的坐標為,∴.故答案為:.15、【解析】由kx-y+2+2k=0,得(x+2)k+(2-y)=0,由此能求出無論實數(shù)k取何值,直線kx-y+2+2k=0恒過定點【詳解】∵kx-y+2+2k=0,∴(x+2)k+(2-y)=0,解方程組,得∴無論實數(shù)k取何值,直線kx-y+2+2k=0恒過定點故答案為:16、【解析】答案:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)角的終邊上有一點,利用三角函數(shù)的定義得到,再利用二倍角的余弦公式求解;(2)利用角的變換,由求解.【詳解】(1)∵角的終邊上有一點,∴,∴,∴,∴.(2)∵,∴,∵,∴,∴,∵,∴.18、(1)(2)【解析】(1)求出函數(shù)的定義域,利用函數(shù)的奇偶性的定義判斷即可;(2)是奇函數(shù),則結合,求解代入求解即可.【詳解】(1)解:是奇函數(shù).證明:要等價于即故的定義域為設任意則又因為所以是奇函數(shù).(2)由(1)知,是奇函數(shù),則聯(lián)立得即解得19、(1),;,.(2)農戶應該選擇方案三,理由見解析.【解析】(1)根據(jù)矩形面積與梯形的面積公式表示即可得答案;(2)先根據(jù)基本不等式研究方案甲得面積的最大值為,再根據(jù)二次函數(shù)的性質結合(1)研究,的最大值即可得答案.【小問1詳解】解:對于方案乙,當時,,所以矩形的面積,;對于方案丙,當時,,由于所以,所以梯形面積為,.【小問2詳解】解:對于方案甲,設,則,所以三角形的面積為,當且僅當時等號成立,故方案甲的雞圈面積最大值為.對于方案乙,由(1)得,,當且僅當時取得最大值.故方案乙的雞圈面積最大值為;對于方案丙,,.當且僅當時取得最大值.故方案丙的雞圈面積最大值為;由于所以農戶應該選擇方案丙,此時雞圈面積最大.20、(1)(2)【解析】(1)先化簡集合A,B,再利用交集運算求解;(2)根據(jù),化簡集合,再根據(jù)求解.【小問1詳解】解:∵,∴,∴集合.∵,∴,∴集合.∴.【小問2詳解】∵,∴.∵,∴,解得.∴實數(shù)a的取值范圍是.21、(1)詳見解析;(2).【解析】(1)連接交于點,連接,,可證明四邊形是平行四邊形,從而,再由線面平行的判定即可求解;(2)作出平面的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論