版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
寧夏石嘴山三中2026屆高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某學(xué)習(xí)小組研究一種衛(wèi)星接收天線(如圖①所示),發(fā)現(xiàn)其曲面與軸截面的交線為拋物線,在軸截面內(nèi)的衛(wèi)星波束呈近似平行狀態(tài)射入形為拋物線的接收天線,經(jīng)反射聚焦到焦點處(如圖②所示).已知接收天線的口徑(直徑)為3.6m,深度為0.6m,則該拋物線的焦點到頂點的距離為()A.1.35m B.2.05mC.2.7m D.5.4m2.在中,已知角A,B,C所對的邊為a,b,c,,,,則()A. B.C. D.13.不等式的一個必要不充分條件是()A. B.C. D.4.甲、乙兩名同學(xué)同時從教室出發(fā)去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館5.某雙曲線的一條漸近方程為,且焦點為,則該雙曲線的方程是()A. B.C. D.6.已知圓與圓相交于A、B兩點,則圓上的動點P到直線AB距離的最大值為()A. B.C. D.7.已知點,則滿足點到直線的距離為,點到直線距離為的直線的條數(shù)有()A.1 B.2C.3 D.48.用斜二測畫法畫出邊長為2的正方形的直觀圖,則直觀圖的面積為()A. B.C.4 D.9.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg10.點,是橢圓的左焦點,是橢圓上任意一點,則的取值范圍是()A. B.C. D.11.已知半徑為2的圓經(jīng)過點(5,12),則其圓心到原點的距離的最小值為()A.10 B.11C.12 D.1312.直線的傾斜角為()A.150° B.120°C.60° D.30°二、填空題:本題共4小題,每小題5分,共20分。13.用一個平面去截半徑為5cm的球,截面面積是則球心到截面的距離為_______14.已知拋物線的焦點為F,過F的直線l交拋物線C于AB兩點,且,則p的值為______15.已知雙曲線的左、右焦點分別為、,直線與的左、右支分別交于點、(、均在軸上方).若直線、的斜率均為,且四邊形的面積為,則__________.16.過拋物線的焦點且斜率為的直線交拋物線于A,兩點,,則的值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)從①,②,③,這三個條件中任選一個,補充在下面問題中并作答:已知等差數(shù)列公差大于零,且前n項和為,,______,,求數(shù)列的前n項和.(注:如果選擇多個條件分別解答,那么按照第一個解答計分)18.(12分)已知圓過點且與圓外切于點,直線將圓分成弧長之比為的兩段圓?。?)求圓的標(biāo)準(zhǔn)方程;(2)直線的斜率19.(12分)如圖,在四棱錐中,底面ABCD是邊長為2的正方形,為正三角形,且側(cè)面底面ABCD,(1)求證:平面ACM;(2)求平面MBC與平面DBC的夾角的大小20.(12分)已知橢圓,離心率為,短半軸長為1(1)求橢圓C的方程;(2)已知直線,問:在橢圓C上是否存在點T,使得點T到直線l的距離最大?若存在,請求出這個最大距離;若不存在,請說明理由21.(12分)已知數(shù)列通項公式為:,其中.記為數(shù)列的前項和(1)求,;(2)數(shù)列的通項公式為,求的前項和22.(10分)已知定義域為的函數(shù)是奇函數(shù),其中為指數(shù)函數(shù)且的圖象過點(1)求的表達式;(2)若對任意的.不等式恒成立,求實數(shù)的取值范圍;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意先建立恰當(dāng)?shù)淖鴺?biāo)系,可設(shè)出拋物線方程,利用已知條件得出點在拋物線上,代入方程求得p值,進而求得焦點到頂點的距離.【詳解】如圖所示,在接收天線的軸截面所在平面上建立平面直角坐標(biāo)系xOy,使接收天線的頂點(即拋物線的頂點)與原點O重合,焦點F在x軸上設(shè)拋物線的標(biāo)準(zhǔn)方程為,由已知條件可得,點在拋物線上,所以,解得,因此,該拋物線的焦點到頂點的距離為1.35m,故選:A.2、B【解析】利用正弦定理求解.【詳解】在中,由正弦定理得,解得,故選:B.3、B【解析】解不等式,由此判斷必要不充分條件.【詳解】,解得,所以不等式的一個必要不充分條件是.故選:B4、A【解析】設(shè)出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設(shè)總路程為,步行速度,跑步速度對于甲:,得對于乙:,當(dāng)且僅當(dāng)時等號成立,而,故,乙花時間多,甲先到體育館故選:A5、D【解析】設(shè)雙曲線的方程為,利用焦點為求出的值即可.【詳解】因為雙曲線的一條漸近方程為,且焦點為,所以可設(shè)雙曲線的方程為,則,,所以該雙曲線方程為.故選:D.6、A【解析】判斷圓與的位置并求出直線AB方程,再求圓心C到直線AB距離即可計算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,,即圓與相交,直線AB方程為:,圓的圓心,半徑,點C到直線AB距離的距離,所以圓C上的動點P到直線AB距離的最大值為.故選:A7、D【解析】以為圓心,為半徑,為圓心,為半徑分別畫圓,將所求轉(zhuǎn)化為求圓與圓的公切線條數(shù),判斷兩圓的位置關(guān)系,從而得公切線條數(shù).【詳解】以為圓心,為半徑,為圓心,為半徑分別畫圓,如圖所示,由題意,滿足點到直線的距離為,點到直線距離為的直線的條數(shù)即為圓與圓的公切線條數(shù),因為,所以兩圓外離,所以兩圓的公切線有4條,即滿足條件的直線有4條.故選:D【點睛】解答本題的關(guān)鍵是將滿足點到直線的距離為,點到直線距離為的直線的條數(shù)轉(zhuǎn)化為圓與圓的公切線條數(shù),從而根據(jù)圓與圓的位置關(guān)系判斷出公切線條數(shù).8、A【解析】畫出直觀圖,求出底和高,進而求出面積.【詳解】如圖,,,,過點C作CD⊥x軸于點D,則,所以直觀圖是底為2、高為的平行四邊形,所以面積為.故選:A.9、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測其體重約為0.85×170﹣85.71=58.79kg,D錯誤故選D10、A【解析】由,當(dāng)三點共線時,取得最值【詳解】設(shè)是橢圓的右焦點,則又因為,,所以,則故選:A11、B【解析】由條件可得圓心的軌跡是以點為圓心,半徑為2的圓,然后可得答案.【詳解】因為半徑為2的圓經(jīng)過點(5,12),所以圓心的軌跡是以點為圓心,半徑為2的圓,所以圓心到原點的距離的最小值為,故選:B12、D【解析】由斜率得傾斜角【詳解】直線的斜率為,所以傾斜角為30°.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、4cm【解析】根據(jù)圓面積公式算出截面圓的半徑,利用球的截面圓性質(zhì)與勾股定理算出球心到截面的距離【詳解】解:設(shè)截面圓的半徑為r,截面的面積是,,可得又球的半徑為5cm,根據(jù)球的截面圓性質(zhì),可得截面到球心的距離為故答案為:4cm【點睛】本題主要考查了球的截面圓性質(zhì)、勾股定理等知識,考查了空間想象能力,屬于基礎(chǔ)題14、3【解析】根據(jù)拋物線焦點弦性質(zhì)求解,或聯(lián)立l與拋物線方程,表示出,求其最值即可.【詳解】已知,設(shè),,,則,∵,所以,,∴,當(dāng)且僅當(dāng)m=0時,取..故答案為:3.15、【解析】設(shè)點關(guān)于原點的對稱點為點,連接,分析可知四邊形為平行四邊形,可得出,設(shè),可得出直線的方程為,設(shè)點、,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,求出的取值范圍,利用三角形的面積公式可求得的值,即可求得的值.【詳解】解:設(shè)點關(guān)于原點的對稱點為點,連接,如下圖所示:在雙曲線中,,,則,即點、,因為原點為、的中點,則四邊形為平行四邊形,所以,且,因為,故、、三點共線,所以,,故,由題意可知,,設(shè),則直線的方程為,設(shè)點、,聯(lián)立,可得,所以,,可得,由韋達定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案為:.16、2【解析】求出直線的方程,與拋物線的方程聯(lián)立,利用根與系數(shù)的關(guān)系可,,由拋物線的定義可知,,,即可得到【詳解】解:拋物線的焦點,,準(zhǔn)線方程為,設(shè),,,,則直線的方程為,代入可得,,,由拋物線的定義可知,,,,解得故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、;【解析】將條件①②③轉(zhuǎn)化為的形式,列方程組,并求解,寫出的通項公式,從而表示出,利用裂項相消法求和.【詳解】選①:設(shè)等差數(shù)列首項為,公差為,因為,,所以,所以,所以,所以選②:設(shè)等差數(shù)列首項為,公差為,因為,,所以,所以,所以,所以選③:設(shè)等差數(shù)列首項為,公差為,因為,,所以,所以,所以,所以【點睛】數(shù)列求和的方法技巧(1)倒序相加:用于等差數(shù)列、與二項式系數(shù)、對稱性相關(guān)聯(lián)的數(shù)列的求和(2)錯位相減:用于等差數(shù)列與等比數(shù)列的積數(shù)列的求和(3)分組求和:用于若干個等差或等比數(shù)列的和或差數(shù)列的求和18、(1);(2).【解析】(1)分析可知圓心在軸上,可設(shè)圓心,根據(jù)圓過點、可得出關(guān)于的方程,求出的值,可得出圓心的坐標(biāo),進而可求得圓的半徑,即可得出圓的標(biāo)準(zhǔn)方程;(2)利用幾何關(guān)系可求得圓心到直線的距離為,再利用點到直線的距離公式可求得的值.【小問1詳解】解:圓的圓心為,記點、,直線即為軸,因為圓與圓外切于點,則圓心在軸上,設(shè)圓心,由可得,解得,則圓心,所以,圓的半徑為,因此,圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:由題意可知,直線截圓所得的弦在圓上對應(yīng)的圓心角為,則圓心到直線的距離為,由點到直線的距離公式可得,解得.19、(1)證明見解析(2)30°【解析】(1)連接BD,借助三角形中位線可證;(2)建立空間直角坐標(biāo)系,利用向量法直接可求.【小問1詳解】連接BD,與AC交于點O,在中,因為O,M分別為BD,PD的中點,則,又平面ACM,平面ACM,所以平面ACM.【小問2詳解】設(shè)E是AB的中點,連接PE,因為為正三角形,則,又因為平面底面ABCD,平面平面,則平面ABCD,過點E作EF平行于CB,與CD交于點F,以E為坐標(biāo)原點,建立空間直角坐標(biāo)系如圖所示,則,,,,,,所以,,設(shè)平面CBM的法向量為,則,令,則,因為平面ABCD,則平面ABCD的一個法向量為,所以,所以平面MBC與平面DBC所成角大小為30°20、(1);(2)存在,最大距離為.,理由見解析【解析】(1)根據(jù)離心率及短軸長求橢圓參數(shù),即可得橢圓方程.(2)根據(jù)直線與橢圓的位置關(guān)系,將問題轉(zhuǎn)為平行于直線且與橢圓相切的切線與直線最大距離,設(shè)直線方程聯(lián)立橢圓方程根據(jù)求參數(shù),進而判斷點T的存在性,即可求最大距離.【小問1詳解】由題設(shè)知:且,又,∴,故橢圓C的方程為.小問2詳解】聯(lián)立直線與橢圓,可得:,∴,即直線與橢圓相離,∴只需求平行于直線且與橢圓相切的切線與直線最大距離即為所求,令平行于直線且與橢圓相切的直線為,聯(lián)立橢圓,整理可得:,∴,可得,當(dāng),切線為,其與直線距離為;當(dāng),切線為,其與直線距離為;綜上,時,與橢圓切點與直線距離最大為.21、(1);;(2).【解析】(1)驗證可知數(shù)列是以為周期的周期數(shù)列,則,;(2)由(1)可求得,利用錯位相減法可求得結(jié)果.【小問1詳解】當(dāng)時,;當(dāng)時,;當(dāng)時,;數(shù)列是以為周期的周期數(shù)列;,;【小問2詳解】由(1)得:,,,,兩式作差得:.22、(1);(2).【解析】(1)設(shè)(且),因為的圖象過點,求得a的值,再根據(jù)函數(shù)f(x)是奇函數(shù),利用f(0)=0即可求得n的值,得到f(x)的解析式,檢驗是奇函數(shù)即可;(2)將分式分離常數(shù)后,利用指數(shù)函數(shù)的性質(zhì)可以判定f(x)在R上單調(diào)遞減,進而結(jié)合奇函數(shù)的性質(zhì)將不等式轉(zhuǎn)化為二次不等式,根據(jù)二次函數(shù)的圖象和性質(zhì),求得對于對任意的恒成立時a的取值范圍即可.【詳解】解:(1)由題意,設(shè)(且),因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年農(nóng)林、畜牧用金屬工具合作協(xié)議書
- 2025年組織毒活苗項目合作計劃書
- 2025年生物可降解塑料合作協(xié)議書
- 2026北京豐臺初三上學(xué)期期末英語試卷和答案
- 2026年智能香氛安全監(jiān)測系統(tǒng)項目營銷方案
- 2026年智能浴巾架 (加熱)項目評估報告
- 2025年江蘇省宿遷市中考生物真題卷含答案解析
- 降水井及降水施工方案
- 2025年機動車檢測站試卷及答案
- 【2025年咨詢工程師決策評價真題及答案】
- 設(shè)備、管道、鋼結(jié)構(gòu)施工方案
- 2021-2026年中國沉香木行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃研究報告
- 數(shù)學(xué)-華中師大一附中2024-2025高一上學(xué)期期末試卷和解析
- 2024-2030年中國海南省廢水污染物處理資金申請報告
- 新能源汽車技術(shù) SL03維修手冊(第4章)-電氣-4.2.2~4.2.12電器集成
- 教科版科學(xué)教材培訓(xùn)
- 甲狀腺的中醫(yī)護理
- 商住樓項目總體規(guī)劃方案
- 2022儲能系統(tǒng)在電網(wǎng)中典型應(yīng)用
- 互聯(lián)網(wǎng)+物流平臺項目創(chuàng)辦商業(yè)計劃書(完整版)
- IABP主動脈球囊反搏課件
評論
0/150
提交評論