版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆陜西省武功縣長寧高級中學(xué)高一上數(shù)學(xué)期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的定義域是()A. B.C.R D.2.在的圖象大致為()A. B.C. D.3.甲、乙兩位同學(xué)解答一道題:“已知,,求的值.”甲同學(xué)解答過程如下:解:由,得.因為,所以.所以.乙同學(xué)解答過程如下:解:因為,所以.則在上述兩種解答過程中()A.甲同學(xué)解答正確,乙同學(xué)解答不正確 B.乙同學(xué)解答正確,甲同學(xué)解答不正確C.甲、乙兩同學(xué)解答都正確 D.甲、乙兩同學(xué)解答都不正確4.袋中裝有5個小球,顏色分別是紅色、黃色、白色、黑色和紫色.現(xiàn)從袋中隨機(jī)抽取3個小球,設(shè)每個小球被抽到的機(jī)會均相等,則抽到白球或黑球的概率為A. B.C. D.5.如圖,在正三棱柱中,,若二面角的大小為,則點C到平面的距離為()A.1 B.C. D.6.設(shè),為平面向量,則“存在實數(shù),使得”是“向量,共線”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件7.已知偶函數(shù)在上單調(diào)遞增,且,則滿足的x的取值范圍是()A. B.C. D.8.一個三棱錐的三視圖如右圖所示,則這個三棱錐的表面積為()A. B.C. D.9.若函數(shù)的定義域和值域都為R,則關(guān)于實數(shù)a的下列說法中正確的是A.或3 B.C.或 D.10.函數(shù)的部分圖像為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,扇形的周長是6,該扇形的圓心角是1弧度,則該扇形的面積為______.12.已知正三棱柱的棱長均為2,則其外接球體積為__________13.已知函數(shù)若方程恰有三個實數(shù)根,則實數(shù)的取值范圍是_______.14.已知是冪函數(shù),且在區(qū)間是減函數(shù),則m=_____________.15.函數(shù)(且)的定義域為__________16.已知正四棱錐的高為4,側(cè)棱長為3,則該棱錐的側(cè)面積為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù)(1)當(dāng)0≤x≤200時,求函數(shù)v(x)的表達(dá)式;(2)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x?v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時)18.設(shè)是定義在上的奇函數(shù),且當(dāng)時,.(1)求當(dāng)時,的解析式;(2)請問是否存在這樣的正數(shù),,當(dāng)時,,且的值域為?若存在,求出,的值;若不存在,請說明理由.19.已知函數(shù),(1)求函數(shù)的最小正周期;(2)求函數(shù)的對稱中心;(3)當(dāng)時,求的最大值和最小值.20.(1)求值:;(2)已知,,試用表示.21.已知集合,(1)當(dāng)時,求;(2)若,求a的取值范圍;
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】顯然這個問題需要求交集.【詳解】對于:,;對于:,;故答案為:A.2、C【解析】先由函數(shù)為奇函數(shù)可排除A,再通過特殊值排除B、D即可.【詳解】由,所以為奇函數(shù),故排除選項A.又,則排除選項B,D故選:C3、D【解析】分別利用甲乙兩位同學(xué)的解題方法解題,從而可得出答案.【詳解】解:對于甲同學(xué),由,得,因為因為,所以,所以,故甲同學(xué)解答過程錯誤;對于乙同學(xué),因為,所以,故乙同學(xué)解答過程錯誤.故選:D.4、D【解析】分析:先求對立事件的概率:黑白都沒有的概率,再用1減得結(jié)果.詳解:從袋中球隨機(jī)摸個,有,黑白都沒有只有種,則抽到白或黑概率為選點睛:古典概型中基本事件數(shù)的探求方法(1)列舉法.(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復(fù)雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.5、C【解析】取的中點,連接和,由二面角的定義得出,可得出、、的值,由此可計算出和的面積,然后利用三棱錐的體積三棱錐的體積相等,計算出點到平面的距離.【詳解】取的中點,連接和,根據(jù)二面角的定義,.由題意得,所以,.設(shè)到平面的距離為,易知三棱錐的體積三棱錐的體積相等,即,解得,故點C到平面的距離為.故選C.【點睛】本題考查點到平面距離的計算,常用的方法有等體積法與空間向量法,等體積法本質(zhì)就是轉(zhuǎn)化為三棱錐的高來求解,考查計算能力與推理能力,屬于中等題.6、A【解析】結(jié)合充分條件和必要條件的概念以及向量共線即可判斷.【詳解】充分性:由共線定理即可判斷充分性成立;必要性:若,,則向量,共線,但不存在實數(shù),使得,即必要性不成立.故選:A.7、B【解析】由題得函數(shù)在上單調(diào)遞減,且,再根據(jù)函數(shù)的圖象得到,解不等式即得解.【詳解】因為偶函數(shù)在上單調(diào)遞增,且,所以在上單調(diào)遞減,且,因為,所以,所以.故選:B【點睛】本題主要考查函數(shù)的單調(diào)性和奇偶性的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.8、B【解析】由三視圖可畫出該三棱錐的直觀圖,如圖,圖中正四棱柱的底面邊長為,高為,棱錐的四個面有三個為直角三角形,一個為腰長為,底長的等腰三角形,其面積分別為:,所以三棱錐的表面積為,故選B.9、B【解析】若函數(shù)的定義域和值域都為R,則.解得或3.當(dāng)時,,滿足題意;當(dāng)時,,值域為{1},不滿足題意.故選B.10、D【解析】先判斷奇偶性排除C,再利用排除B,求導(dǎo)判斷單調(diào)性可排除A.【詳解】因為,所以為偶函數(shù),排除C;因為,排除B;當(dāng)時,,,當(dāng)時,,所以函數(shù)在區(qū)間上單調(diào)遞減,排除A.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】由扇形周長求得半徑同,弧長,再由面積公式得結(jié)論【詳解】設(shè)半徑為,則,,所以弧長為,面積為故答案為:212、【解析】分別是上,下底面的中心,則的中點為幾何體的外接球的球心,13、【解析】令f(t)=2,解出t,則f(x)=t,討論k的符號,根據(jù)f(x)的函數(shù)圖象得出t的范圍即可【詳解】解:令f(t)=2得t=﹣1或t(k≠0)∵f(f(x))﹣2=0,∴f(f(x))=2,∴f(x)=﹣1或f(x)(k≠0)(1)當(dāng)k=0時,做出f(x)的函數(shù)圖象如圖所示:由圖象可知f(x)=﹣1無解,即f(f(x))﹣2=0無解,不符合題意;(2)當(dāng)k>0時,做出f(x)的函數(shù)圖象如圖所示:由圖象可知f(x)=﹣1無解,f(x)無解,即f(f(x))﹣2=0無解,不符合題意;(3)當(dāng)k<0時,做出f(x)的函數(shù)圖象如圖所示:由圖象可知f(x)=﹣1有1解,∵f(f(x))﹣2=0有3解,∴f(x)有2解,∴1,解得﹣1<k綜上,k的取值范圍是(﹣1,]故答案為(﹣1,]【點睛】本題考查了函數(shù)零點個數(shù)與函數(shù)圖象的關(guān)系,數(shù)形結(jié)合思想,屬于中檔題14、【解析】根據(jù)冪函數(shù)系數(shù)為1,得或,代入檢驗函數(shù)單調(diào)性即可得解.【詳解】由是冪函數(shù),可得,解得或,當(dāng)時,在區(qū)間是減函數(shù),滿足題意;當(dāng)時,在區(qū)間是增函數(shù),不滿足題意;故.故答案為:.15、【解析】根據(jù)對數(shù)的性質(zhì)有,即可求函數(shù)的定義域.【詳解】由題設(shè),,可得,即函數(shù)的定義域為.故答案為:16、【解析】由高和側(cè)棱求側(cè)棱在底面射影長,得底面邊長,從而可求得斜高,可得側(cè)面積【詳解】如圖,正四棱錐,是高,是中點,則是斜高,由已知,,則,是正方形,∴,,,側(cè)面積側(cè)故答案為:【點睛】關(guān)鍵點點睛:本題考查求正棱錐的側(cè)面積.在正棱錐計算中,解題關(guān)鍵是掌握四個直角三角形:如解析中圖中,正棱錐的幾乎所有量在這四個直角三角形中都有反應(yīng)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)3333輛/小時【解析】(1)由題意:當(dāng)0≤x≤20時,v(x)=60;當(dāng)20<x≤200時,設(shè)v(x)=ax+b再由已知得,解得故函數(shù)v(x)的表達(dá)式為(2)依題并由(1)可得當(dāng)0≤x<20時,f(x)為增函數(shù),故當(dāng)x=20時,其最大值為60×20=1200當(dāng)20≤x≤200時,當(dāng)且僅當(dāng)x=200﹣x,即x=100時,等號成立所以,當(dāng)x=100時,f(x)在區(qū)間(20,200]上取得最大值綜上所述,當(dāng)x=100時,f(x)在區(qū)間[0,200]上取得最大值為,即當(dāng)車流密度為100輛/千米時,車流量可以達(dá)到最大值,最大值約為3333輛/小時答:(1)函數(shù)v(x)的表達(dá)式(2)當(dāng)車流密度為100輛/千米時,車流量可以達(dá)到最大值,最大值約為3333輛/小時18、(1)當(dāng)時,(2),【解析】(1)根據(jù)函數(shù)的奇偶性,求解解析式即可;(2)根據(jù)題意,結(jié)合函數(shù)單調(diào)性,將問題轉(zhuǎn)化為是方程的兩個根的問題,進(jìn)而解方程即可得答案.【詳解】(1)當(dāng)時,,于是.因為是定義在上的奇函數(shù),所以,即.(2)假設(shè)存在正實數(shù),當(dāng)時,且的值域為,根據(jù)題意,,因為,則,得.又函數(shù)在上是減函數(shù),所以,由此得到:是方程的兩個根,解方程求得所以,存在正實數(shù),當(dāng)時,且的值域為19、(1)最小正周期(2),(3),【解析】(1)利用兩角和公式和二倍角公式對函數(shù)解析式化簡整理,利用周期公式求得函數(shù)的最小正周期,利用三角函數(shù)圖象和性質(zhì)求得其對稱軸方程(2)根據(jù)正弦函數(shù)的性質(zhì)計算可得;(3)利用的范圍求得的范圍,再根據(jù)正弦函數(shù)的性質(zhì)求出函數(shù)在區(qū)間上最大值和最小值【小問1詳解】解:即所以的最小正周期為,【小問2詳解】解:令,,解得,,所以函數(shù)的對稱中心為,【小問3詳解】解:當(dāng)時,,所以則當(dāng),即時,;當(dāng),即時,20、(1)(2)【解析】(1)先將小數(shù)轉(zhuǎn)化為分?jǐn)?shù)并約簡,然后各式化成指數(shù)冪的形式,再利用指數(shù)運(yùn)算法則即可化簡求值.(2)先利用對數(shù)的換底公式,以及相關(guān)的運(yùn)算公式將轉(zhuǎn)化為以表示的式子,然后換成m,n即可.【詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 20047.1-2025光伏組件安全鑒定第1部分:結(jié)構(gòu)要求
- 智能控制 課件 -第四章-專家控制系統(tǒng)
- 2025中學(xué)教師招聘考試題
- 內(nèi)分泌科病區(qū)安全防護(hù)
- 內(nèi)分泌甲狀腺科普
- 新年心愿活動策劃方案(3篇)
- 綜合體項目管理制度(3篇)
- 獸藥管理培訓(xùn)
- 銷售合同管理制度流程模板(3篇)
- 《GAT 760.2-2008公安信息化標(biāo)準(zhǔn)管理分類與代碼 第2部分:標(biāo)準(zhǔn)級別代碼》專題研究報告深度
- 數(shù)字孿生方案
- 金融領(lǐng)域人工智能算法應(yīng)用倫理與安全評規(guī)范
- 2026長治日報社工作人員招聘勞務(wù)派遣人員5人備考題庫及答案1套
- 機(jī)動車駕校安全培訓(xùn)課件
- 河道清淤作業(yè)安全組織施工方案
- 2025年役前訓(xùn)練考試題庫及答案
- 2024VADOD臨床實踐指南:耳鳴的管理課件
- 2026年七臺河職業(yè)學(xué)院單招職業(yè)技能測試題庫附答案
- 2021海灣消防 GST-LD-8318 緊急啟停按鈕使用說明書
- 煙花爆竹零售經(jīng)營安全責(zé)任制度
- 方小丹建筑地基基礎(chǔ)設(shè)計的若干問題課件
評論
0/150
提交評論