2026屆江蘇省徐州一中、如皋中學(xué)、宿遷中學(xué)高二上數(shù)學(xué)期末調(diào)研試題含解析_第1頁
2026屆江蘇省徐州一中、如皋中學(xué)、宿遷中學(xué)高二上數(shù)學(xué)期末調(diào)研試題含解析_第2頁
2026屆江蘇省徐州一中、如皋中學(xué)、宿遷中學(xué)高二上數(shù)學(xué)期末調(diào)研試題含解析_第3頁
2026屆江蘇省徐州一中、如皋中學(xué)、宿遷中學(xué)高二上數(shù)學(xué)期末調(diào)研試題含解析_第4頁
2026屆江蘇省徐州一中、如皋中學(xué)、宿遷中學(xué)高二上數(shù)學(xué)期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆江蘇省徐州一中、如皋中學(xué)、宿遷中學(xué)高二上數(shù)學(xué)期末調(diào)研試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標(biāo)系中,已知,,則MN的中點P到坐標(biāo)原點О的距離為()A. B.C.2 D.32.在等差數(shù)列中,若的值是A.15 B.16C.17 D.183.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q4.雙曲線的離心率是,則雙曲線的漸近線方程是()A. B.C. D.5.已知直線過點,且與直線垂直,則直線的方程是()A. B.C. D.6.動點到兩定點,的距離和是,則動點的軌跡為()A.橢圓 B.雙曲線C.線段 D.不能確定7.已知函數(shù)是定義在上奇函數(shù),,當(dāng)時,有成立,則不等式的解集是()A. B.C. D.8.已知橢圓的長軸長為,短軸長為,則橢圓上任意一點到橢圓中心的距離的取值范圍是()A. B.C. D.9.已知,,,則,,的大小關(guān)系是A. B.C. D.10.若,則實數(shù)的取值范圍是()A. B.C. D.11.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點 D.2為函數(shù)的極大值點12.積分()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于的不等式恒成立,則實數(shù)的取值范圍是___________.14.如圖,一個小球從10m高處自由落下,每次著地后又彈回到原來高度的,若已知小球經(jīng)過的路程為,則小球落地的次數(shù)為______15.必然事件的概率是________.16.已知圓錐的母線長為cm,其側(cè)面展開圖是一個半圓,則底面圓的半徑為____cm.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若在上單調(diào)遞減,求實數(shù)a的取值范圍(2)若是方程的兩個不相等的實數(shù)根,證明:18.(12分)已知函數(shù),為的導(dǎo)函數(shù)(1)求的定義域和導(dǎo)函數(shù);(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(3)若對,都有成立,且存在,使成立,求實數(shù)a的取值范圍19.(12分)已知,其中.(1)若,求在處的切線方程;(2)若是函數(shù)的極小值點,求函數(shù)在區(qū)間上的最值;(3)討論函數(shù)的單調(diào)性.20.(12分)在平面直角坐標(biāo)系中,已知直線:(t為參數(shù)).以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為(1)求曲線C的直角坐標(biāo)方程;(2)設(shè)點M的直角坐標(biāo)為,直線l與曲線C的交點為A,B,求的值21.(12分)已知是等差數(shù)列,是各項都為正數(shù)的等比數(shù)列,,再從①;②;③這三個條件中選擇___________,___________兩個作為已知.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.22.(10分)設(shè)全集U=R,集合A={x|1≤x≤5},集合B={x|2-a≤x≤1+2a},其中a∈R.(1)若“x∈A”是“x∈B”的充分條件,求a的取值范圍;(2)若“x∈A”是“x∈B”的必要條件,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用中點坐標(biāo)公式及空間中兩點之間的距離公式可得解.【詳解】,,由中點坐標(biāo)公式,得,所以.故選:A2、C【解析】由已知直接利用等差數(shù)列的性質(zhì)求解【詳解】在等差數(shù)列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故選C【點睛】本題考查等差數(shù)列的通項公式,考查等差數(shù)列的性質(zhì),是基礎(chǔ)題3、B【解析】取x=4,得出命題p是假命題,由對數(shù)的運算得出命題q是假命題,再判斷選項.【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.4、B【解析】利用雙曲線的離心率,以及漸近線中,關(guān)系,結(jié)合找關(guān)系即可【詳解】解:,又因為在雙曲線中,,所以,故,所以雙曲線的漸近線方程為,故選:B5、D【解析】由題意設(shè)直線方程為,然后將點坐標(biāo)代入求出,從而可求出直線方程【詳解】因為直線與直線垂直,所以設(shè)直線方程為,因為直線過點,所以,得,所以直線方程為,故選:D6、A【解析】根據(jù)橢圓的定義,即可得答案.【詳解】由題意可得,根據(jù)橢圓定義可得,P點的軌跡為橢圓,故選:A7、A【解析】構(gòu)造函數(shù),分析該函數(shù)的定義域與奇偶性,利用導(dǎo)數(shù)分析出函數(shù)在上為增函數(shù),從而可知該函數(shù)在上為減函數(shù),綜合可得出原不等式的解集.【詳解】令,則函數(shù)的定義域為,且,則函數(shù)為偶函數(shù),所以,,當(dāng)時,,所以,函數(shù)在上為增函數(shù),故函數(shù)在上為減函數(shù),由等價于或:當(dāng)時,由可得;當(dāng)時,由可得.綜上所述,不等式的解集為.故選:A.8、A【解析】不妨設(shè)橢圓的焦點在軸上,設(shè)點,則,且有,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【詳解】不妨設(shè)橢圓的焦點在軸上,則該橢圓的標(biāo)準(zhǔn)方程為,設(shè)點,則,且有,所以,.故選:A.9、B【解析】若對數(shù)式的底相同,直接利用對數(shù)函數(shù)的性質(zhì)判斷即可,若底不同,則根據(jù)結(jié)構(gòu)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性判斷大小【詳解】對于的大?。?,,明顯;對于的大小:構(gòu)造函數(shù),則,當(dāng)時,在上單調(diào)遞增,當(dāng)時,在上單調(diào)遞減,即對于的大?。?,,,故選B【點睛】將兩兩變成結(jié)構(gòu)相同的對數(shù)形式,然后利用對數(shù)函數(shù)的性質(zhì)判斷,對于結(jié)構(gòu)類似的,可以通過構(gòu)造函數(shù)來來比較大小,此題是一道中等難度的題目10、B【解析】由題意可知且,構(gòu)造函數(shù),可得出,由函數(shù)的單調(diào)性可得出,利用導(dǎo)數(shù)求出函數(shù)的最小值,可得出關(guān)于的不等式,由此可解得實數(shù)的取值范圍.【詳解】因為,則且,由已知可得,構(gòu)造函數(shù),其中,,所以,函數(shù)為上的增函數(shù),由已知,所以,,可得,構(gòu)造函數(shù),其中,則.當(dāng)時,,此時函數(shù)單調(diào)遞減,當(dāng)時,,此時函數(shù)單調(diào)遞增,則,所以,,解得.故選:B.11、D【解析】根據(jù)導(dǎo)函數(shù)與原函數(shù)的關(guān)系可求解.【詳解】對于A,在區(qū)間,,故A不正確;對于B,在區(qū)間,,故B不正確;對于C、D,由圖可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,所以為函數(shù)的極大值點,故C不正確,D正確.故選:D12、B【解析】根據(jù)定積分的幾何意義求值即可.【詳解】由題設(shè),定積分表示圓在x軸的上半部分,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】參變分離,可得,設(shè),求導(dǎo)分析單調(diào)性,可得,即得解【詳解】因為,所以不等式可化為,設(shè),則,設(shè),由于故在上單調(diào)遞增,且,則當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增,所以,則,即.故答案為:14、4【解析】設(shè)小球從第(n-1)次落地到第n次落地時經(jīng)過的路程為m,則由已知可得數(shù)列是從第2項開始以首項為,公比為的等比數(shù)列,根據(jù)等比數(shù)列的通項公式求得,再設(shè)設(shè)小球第n次落地時,經(jīng)過的路程為,由等比數(shù)列的求和公式建立方程求解即可.【詳解】解:設(shè)小球從第(n-1)次落地到第n次落地時經(jīng)過的路程為m,則當(dāng)時,得出遞推關(guān)系,所以數(shù)列是從第2項開始以首項為,公比為的等比數(shù)列,所以,且,設(shè)小球第n次落地時,經(jīng)過的路程為,所以,所以,解得,故答案為:4.15、1【解析】直接由必然事件的定義求解【詳解】因為必然事件是一定要發(fā)生的,所以必然事件的概率是1,故答案為:116、【解析】根據(jù)題意可知圓錐側(cè)面展開圖的半圓的半徑為cm,再根據(jù)底面圓的周長等于側(cè)面的弧長,即可求出結(jié)果.【詳解】設(shè)底面圓的半徑為,由于側(cè)面展開圖是一個半圓,又圓錐的母線長為cm,所以該半圓的半徑為cm,所以,所以(cm).故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)詳見解析【解析】(1)首先求函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,參變分離后,轉(zhuǎn)化為求函數(shù)的最值,即可求得實數(shù)的取值范圍;(2)將方程的實數(shù)根代入方程,再變形得到,利用分析法,轉(zhuǎn)化為證明,通過換元,構(gòu)造函數(shù),轉(zhuǎn)化為利用導(dǎo)數(shù)證明,恒成立.【小問1詳解】,,在上單調(diào)遞減,在上恒成立,即,即在,設(shè),,,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,所以函數(shù)的最大值是,所以;【小問2詳解】若是方程兩個不相等的實數(shù)根,即又2個不同實數(shù)根,且,,得,即,所以,不妨設(shè),則,要證明,只需證明,即證明,即證明,令,,令函數(shù),所以,所以函數(shù)在上單調(diào)遞減,當(dāng)時,,所以,,所以,即,即得【點睛】本題考查利用導(dǎo)數(shù)的單調(diào)性求參數(shù)的取值范圍,以及證明不等式,屬于難題,導(dǎo)數(shù)中的雙變量問題,往往采用分析法,轉(zhuǎn)化為函數(shù)與不等式的關(guān)系,通過構(gòu)造函數(shù),結(jié)合函數(shù)的導(dǎo)數(shù),即可證明.18、(1),(2)在單減,也單減,無增區(qū)間(3)【解析】(1)根據(jù)分母不等于0,對數(shù)的真數(shù)大于零即可求得函數(shù)的定義域,根據(jù)基本初等函數(shù)的求導(dǎo)公式及商的導(dǎo)數(shù)公式即可求出函數(shù)的導(dǎo)函數(shù);(2)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)函數(shù)的符號即可得出答案;(3)若對,都有成立,即,即,令,,只要即可,利用導(dǎo)數(shù)求出函數(shù)的最小值即可求出的范圍,,,求出函數(shù)的值域,根據(jù)存在,使成立,則0在函數(shù)的值域中,從而可得出的范圍,即可得解.【小問1詳解】解:的定義域為,;【小問2詳解】解:當(dāng)時,,恒成立,所以在和上遞減;【小問3詳解】解:若對,都有成立,即,即,令,,則,對于函數(shù),,當(dāng)時,,當(dāng)時,,所以函數(shù)在上遞增,在上遞減,所以,當(dāng)時,,所以,所以,故恒成立,在為減函數(shù),所以,所以,由(1)知,,所以,記,令,,則原式的值域為,因為存在,使成立,所以,,所以,綜上,【點睛】本題考查了函數(shù)的定義域及導(dǎo)數(shù)的四則運算,考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查了不等式恒成立問題,考查了計算能力及數(shù)據(jù)分析能力,對不等式恒成立合理變形轉(zhuǎn)化為求最值是解題關(guān)鍵.19、(1);(2)最大值為5,最小值為;(3)答案見解析.【解析】(1)求出導(dǎo)函數(shù),進而根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,然后求出切線方程;(2)根據(jù)求出a,進而求出函數(shù)的單調(diào)區(qū)間,然后求出函數(shù)的最值;(3)先求出導(dǎo)函數(shù),然后討論a的取值范圍,進而求出函數(shù)的單調(diào)區(qū)間.【小問1詳解】當(dāng)時,,,切點坐標(biāo)為,,切線的斜率為,切線方程為,即.【小問2詳解】,是函數(shù)的極小值點,,即,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為,,函數(shù)在區(qū)間上的最大值為5,最小值為.【小問3詳解】函數(shù)的定義域為,,令得,.①當(dāng)時,,函數(shù)在R上單調(diào)遞增;②當(dāng)時,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為;③當(dāng)時,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為.綜上:時,,函數(shù)R上單調(diào)遞增;時,的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;時,的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.20、(1)(2)【解析】【小問1詳解】由,得.兩邊同乘,即.由,得曲線的直角坐標(biāo)方程為【小問2詳解】將代入,得,設(shè)A,B對應(yīng)的參數(shù)分別為則所以.由參數(shù)的幾何意義得21、答案見解析【解析】(1)根據(jù)題設(shè)條件可得關(guān)于基本量的方程組,求解后可得的通項公式.(2)利用公式法可求數(shù)列的前項和.【詳解】解:選擇條件①和條件②(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴,.(2)設(shè)等比數(shù)列的公比為,,∴解得,.設(shè)數(shù)列的前項和為,∴.選擇條件①和條件③:(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴.(2),設(shè)等比數(shù)列的公比為,.∴,解得,.設(shè)數(shù)列的前項和為,∴.選擇條件②和條件③:(1)設(shè)等比數(shù)列的公比為,,∴,解得,,.設(shè)等差數(shù)列的公差為,∴,又,故.∴.(2)設(shè)數(shù)列的前項和為,由(1)可知.【點睛】方法點睛:等差數(shù)列或等比數(shù)列的處理有兩類基本方法:(1)利用基本量即把數(shù)學(xué)問題轉(zhuǎn)化為關(guān)于基本量的方程或方程組,再運用基本量解決與數(shù)列相關(guān)的問題;(2)利用數(shù)列的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論