版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省常熟市2026屆高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)命題,則為()A. B.C. D.2.設(shè)θ為銳角,,則cosθ=()A. B.C. D.3.和函數(shù)是同一函數(shù)的是()A. B.C. D.4.已知,,則()A. B.C. D.5.已知是定義在上的偶函數(shù),那么的最大值是()A.0 B.C. D.16.若集合中的元素是△ABC的三邊長,則△ABC一定不是()A.銳角三角形 B.直角三角形C.鈍角三角形 D.等腰三角形7.已知點在外,則直線與圓的位置關(guān)系為()A.相交B.相切C.相離D.相交、相切、相離三種情況均有可能8.已知定義域為的函數(shù)滿足:,且,當(dāng)時,,則等于()A B.C.2 D.49.已知,,則A. B.C. D.,10.已知函數(shù)為偶函數(shù),則A.2 B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù),在區(qū)間上增數(shù),則實數(shù)t的取值范圍是________.12.函數(shù)的定義域為__________13.已知圓,圓,則兩圓公切線的方程為__________14.給出下列命題:①存在實數(shù),使;②函數(shù)是偶函數(shù);③若是第一象限的角,且,則;④直線是函數(shù)的一條對稱軸;⑤函數(shù)的圖像關(guān)于點成對稱中心圖形.其中正確命題序號是__________.15.已知且,且,如果無論在給定的范圍內(nèi)取任何值時,函數(shù)與函數(shù)總經(jīng)過同一個定點,則實數(shù)__________16.經(jīng)過點P(3,2),且在兩坐標(biāo)軸上的截距相等的直線方程為(寫出一般式)___三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,,,求.18.若向量的最大值為(1)求的值及圖像的對稱中心;(2)若不等式在上恒成立,求的取值范圍19.已知直線,直線經(jīng)過點,且(1)求直線的方程;(2)記與軸相交于點,與軸相交于點,與相交于點,求的面積20.已知函數(shù)的圖象的一部分如圖所示:(1)求函數(shù)的解析式;(2)求函數(shù)圖象的對稱軸方程及對稱中心21.已知函數(shù).(1)當(dāng)有是實數(shù)解時,求實數(shù)的取值范圍;(2)若,對一切恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)全稱量詞否定的定義可直接得到結(jié)果.【詳解】根據(jù)全稱量詞否定的定義可知:為:,使得.故選:.【點睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.2、D【解析】為銳角,故選3、D【解析】根據(jù)相同的函數(shù)定義域,對應(yīng)法則,值域都相同可知ABC不符合要求,D滿足.【詳解】的定義域為,值域為,對于A,與的對應(yīng)法則不同,故不是同一個函數(shù);對于B,的值域為,故不是同一個函數(shù);對于C,的定義域為,故不是同一個函數(shù);對于D,,故與是同一個函數(shù).故選:D4、D【解析】由同角三角函數(shù)的平方關(guān)系計算即可得出結(jié)果.【詳解】因為,,,,所以.故選:D5、C【解析】∵f(x)=ax2+bx是定義在[a-1,2a]上偶函數(shù),∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故選C.6、D【解析】根據(jù)集合元素的互異性即可判斷.【詳解】由題可知,集合中的元素是的三邊長,則,所以一定不是等腰三角形故選:D7、A【解析】結(jié)合點與圓的位置關(guān)系,直線和圓的位置關(guān)系列不等式,由此確定正確答案.【詳解】是圓C:外一點,,圓心到直線的距離:,直線與圓相交故選:A8、A【解析】根據(jù)函數(shù)的周期性以及奇偶性,結(jié)合已知函數(shù)解析式,代值計算即可.【詳解】因為函數(shù)滿足:,且,故是上周期為的偶函數(shù),故,又當(dāng)時,,則,故.故選:A.9、D【解析】∵,,∴,,∴.故選10、A【解析】由偶函數(shù)的定義,求得的解析式,再由對數(shù)的恒等式,可得所求,得到答案【詳解】由題意,函數(shù)為偶函數(shù),可得時,,,則,,可得,故選A【點睛】本題主要考查了分段函數(shù)的運用,函數(shù)的奇偶性的運用,其中解答中熟練應(yīng)用對數(shù)的運算性質(zhì),正確求解集合A,再根據(jù)集合的運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】作出函數(shù)的圖象,數(shù)形結(jié)合可得結(jié)果.【詳解】解:函數(shù)的圖像如圖.由圖像可知要使函數(shù)是區(qū)間上的增函數(shù),則.故答案為【點睛】本題考查函數(shù)的單調(diào)性,考查函數(shù)的圖象的應(yīng)用,考查數(shù)形結(jié)合思想,屬于簡單題目.12、【解析】真數(shù)大于0求定義域.【詳解】由題意得:,解得:,所以定義域為.故答案為:13、【解析】圓,圓心為(0,0),半徑為1;圓,圓心為(4,0),半徑為5.圓心距為4=5-1,故兩圓內(nèi)切.切點為(-1,0),圓心連線為x軸,所以兩圓公切線的方程為,即.故答案.14、④⑤【解析】根據(jù)兩角和與差的正弦公式可得到sinα+cosαsin(α)結(jié)合正弦函數(shù)的值域可判斷①;根據(jù)誘導(dǎo)公式得到=sinx,再由正弦函數(shù)的奇偶性可判斷②;舉例說明該命題正誤可判斷③;x代入到y(tǒng)=sin(2xπ),根據(jù)正弦函數(shù)的對稱性可判斷④;x代入到,根據(jù)正切函數(shù)的對稱性可判斷⑤.【詳解】對于①,sinα+cosαsin(α),故①錯誤;對于②,=sinx,其為奇函數(shù),故②錯誤;對于③,當(dāng)α、β時,α、β是第一象限的角,且α>β,但sinα=sinβ,故③錯誤;對于④,x代入到y(tǒng)=sin(2xπ)得到sin(2π)=sin1,故命題④正確;對于⑤,x代入到得到tan()=0,故命題⑤正確.故答案為④⑤【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了三角函數(shù)的化簡與求值問題,是綜合性題目15、3【解析】因為函數(shù)與函數(shù)總經(jīng)過同一個定點,函數(shù)的圖象經(jīng)過定點,所以函數(shù)總也經(jīng)過,所以,,,故答案為.16、x+y-5=0或2x-3y=0【解析】當(dāng)直線經(jīng)過原點時,在兩坐標(biāo)軸上的截距相等,可得其方程為2x﹣3y=0;當(dāng)直線不經(jīng)過原點時,可得它的斜率為﹣1,由此設(shè)出直線方程并代入P的坐標(biāo),可求出其方程為x+y﹣5=0,最后加以綜合即可得到答案【詳解】當(dāng)直線經(jīng)過原點時,設(shè)方程為y=kx,∵直線經(jīng)過點P(3,2),∴2=3k,解之得k,此時的直線方程為yx,即2x﹣3y=0;當(dāng)直線不經(jīng)過原點時,設(shè)方程為x+y+c=0,將點P(3,2)代入,得3+2+c=0,解之得c=﹣5,此時的直線方程為x+y﹣5=0綜上所述,滿足條件的直線方程為:2x﹣3y=0或x+y﹣5=0故答案為:x+y-5=0或2x-3y=0【點睛】本題給出直線經(jīng)過定點且在兩個軸上的截距相等,求直線的方程.著重考查了直線的基本量與基本形式等知識,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】由已知結(jié)合商數(shù)關(guān)系、平方關(guān)系求,根據(jù)的范圍及平方關(guān)系求,最后由結(jié)合差角余弦公式求值即可.【詳解】因為,所以,又,可得或,而,所以,由,且,解得,因為,,則,所以,所以.18、(1)(2)【解析】(1)先利用向量的數(shù)量積公式和倍角公式對函數(shù)式進(jìn)行化簡,再利用兩倍角公式以及兩角差的正弦公式進(jìn)行整理,然后根據(jù)最大值為解出的值,最后根據(jù)正弦函數(shù)的性質(zhì)求得函數(shù)的對稱中心;(2)首先通過的取值范圍來確定函數(shù)的范圍,再根據(jù)不等式在上恒成立,推斷出,最后計算得出結(jié)果【詳解】因為的最大值為,所以,由得所以的對稱中心為;(2)因為,所以即,因為不等式在上恒成立,所以即解得,的取值范圍為【點睛】本題考查了向量的相關(guān)性質(zhì)以及三角函數(shù)相關(guān)性質(zhì),主要考查了向量的乘法、三角函數(shù)的對稱性、三角恒等變換、三角函數(shù)的值域等,屬于中檔題.的對稱中心為19、(1);(2)【解析】(1)根據(jù)兩條直線垂直的斜率關(guān)系可得直線的斜率,代入求得截距,即可求得直線的方程.(2)根據(jù)題意分別求得的坐標(biāo),可得的長,由的縱坐標(biāo)即可求得的面積【詳解】(1)由題意,則兩條直線的斜率之積為即直線的斜率為因為,所以可設(shè)將代入上式,解得即(2)在直線中,令,得,即在直線:中,令,得,即解方程組,得,,即則底邊的長為,邊上的高為故【點睛】本題考查了直線與直線垂直的斜率關(guān)系,直線與軸交點坐標(biāo),直線的交點坐標(biāo)求法,屬于基礎(chǔ)題.20、(1);(2)對稱軸,;對稱中心為,【解析】(1)根據(jù)圖形的最高點最低點,得到,以及觀察到一個周期的長度為8,求出,在代入點的坐標(biāo)即可求出,從而得到表達(dá)式;(2)利用正弦曲線的對稱軸和對稱中心,將看作整體進(jìn)行計算即可.【詳解】解:(1)由題圖知,,,,又圖象經(jīng)過點,.,,(2)令,.,圖象的對稱軸,令,.圖象的對稱中心為,21、(1);(2)【解析】(1)由題意可知實數(shù)的取值范圍為函數(shù)的值域,結(jié)合三角函數(shù)的范圍和二次函數(shù)的性質(zhì)可知時函數(shù)取得最小值,當(dāng)時函數(shù)取得最大值,實數(shù)的取值范圍是.(2)由題意可得時函數(shù)取得最大值,當(dāng)時函數(shù)取得最小值,原問題等價于,求解不等式組可得實數(shù)的取值范圍是.試題解析:(1)因為,可化得,若方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年醫(yī)學(xué)基礎(chǔ)知識全解與模擬試題
- 2026年能源科學(xué)及可持續(xù)發(fā)展研究測試題
- 2026年市場營銷專員面試題目創(chuàng)新型企業(yè)的薪酬激勵方案
- 2026年中醫(yī)基礎(chǔ)理論與藥性測試題庫中醫(yī)學(xué)愛好者的練習(xí)材料
- 2026年建筑設(shè)計師資格綜合知識法規(guī)試題庫
- 2026年網(wǎng)絡(luò)安全工程師Web安全滲透測試案例題
- 2026年機房遭遇水災(zāi)IT設(shè)備防水措施與恢復(fù)方案題目
- 2026年環(huán)境保護(hù)法規(guī)與污染事故處理試題
- BIM數(shù)字化信息傳遞方案
- 工程數(shù)據(jù)共享與整合方案
- 制造業(yè)工業(yè)自動化生產(chǎn)線方案
- 《傳播學(xué)概論(第四版)》全套教學(xué)課件
- (正式版)JB∕T 7052-2024 六氟化硫高壓電氣設(shè)備用橡膠密封件 技術(shù)規(guī)范
- 單位車輛委托處理協(xié)議書
- 2024工傷免責(zé)承諾書
- 企業(yè)人才發(fā)展方案
- 《上樞密韓太尉書》教學(xué)課件
- 數(shù)字化與碳中和園區(qū)篇
- 八年級歷史上冊期末測試題帶答案
- 花城版音樂七年級下冊53康定情歌教案設(shè)計
- 2023年江蘇省中學(xué)生生物奧林匹克競賽試題及答案
評論
0/150
提交評論