版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
甘肅省白銀市2026屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)是定義在R上的偶函數(shù),且,當(dāng)時,,則在區(qū)間上零點的個數(shù)為()A.2 B.3C.4 D.52.下列說法中正確的是()A.存在只有4個面的棱柱 B.棱柱的側(cè)面都是四邊形C.正三棱錐的所有棱長都相等 D.所有幾何體的表面都能展開成平面圖形3.盡管目前人類還無法精準預(yù)報地震,但科學(xué)家通過研究,已經(jīng)對地震有所了解,例如,地震釋放出的能量E(單位:焦耳)與地震里氏震級之間的關(guān)系式為.年月日,日本東北部海域發(fā)生里氏級地震,它所釋放出來的能量是年月日我國四川九寨溝縣發(fā)生里氏級地震的()A.倍 B.倍C.倍 D.倍4.下列函數(shù)中,既不是奇函數(shù)也不是偶函數(shù)的是A. B.C. D.5.角的終邊過點,則()A. B.C. D.6.已知集合,,那么()A. B.C. D.7.如圖所示的時鐘顯示的時刻為3:30,此時時針與分針的夾角為.若一個扇形的圓心角為a,弧長為10,則該扇形的面積為()A. B.C. D.8.設(shè),,則的值為()A. B.C.1 D.e9.下列四組函數(shù)中,表示同一個函數(shù)的一組是()A.,B.,C.,D.,10.若、是全集真子集,則下列四個命題①;②;③;④中與命題等價的有A.1個 B.2個C.3個 D.4個二、填空題:本大題共6小題,每小題5分,共30分。11.已知關(guān)于的方程在有解,則的取值范圍是________12.已知函數(shù)若互不相等,且,則的取值范圍是13.筒車是我國古代發(fā)明的一種水利灌溉工具,因其經(jīng)濟又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用.明朝科學(xué)家徐光啟在《農(nóng)政全書》中用圖1描繪了筒車的工作原理.假定在水流穩(wěn)定的情況下,筒車上的每一個盛水筒都做勻速圓周運動.如圖2,將筒車抽象為一個幾何圖形(圓),以筒車轉(zhuǎn)輪的中心為原點,過點的水平直線為軸建立如圖直角坐標系.已知一個半徑為1.6m的筒車按逆時針方向每30s勻速旋轉(zhuǎn)一周,到水面的距離為0.8m.規(guī)定:盛水筒對應(yīng)的點從水中浮現(xiàn)(時的位置)時開始計算時間,且設(shè)盛水筒從點運動到點時所經(jīng)過的時間為(單位:s),且此時點距離水面的高度為(單位:m)(在水面下則為負數(shù)),則關(guān)于的函數(shù)關(guān)系式為___________,在水輪轉(zhuǎn)動的任意一圈內(nèi),點距水面的高度不低于1.6m的時長為___________s.14.若,,且,則的最小值為__________15.已知對于任意x,y均有,且時,,則是_____(填奇或偶)函數(shù)16.滿足的集合的個數(shù)是______________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)求函數(shù)的最大值;(2)若,,求的值18.已知函數(shù)的圖象在定義域上連續(xù)不斷.若存在常數(shù),使得對于任意的,恒成立,稱函數(shù)滿足性質(zhì).(1)若滿足性質(zhì),且,求的值;(2)若,試說明至少存在兩個不等的正數(shù),同時使得函數(shù)滿足性質(zhì)和.(參考數(shù)據(jù):)(3)若函數(shù)滿足性質(zhì),求證:函數(shù)存在零點.19.計算題20.如圖,三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求與平面所成角的大小.21.計算下列各式的值:(1),其中m,n均為正數(shù),為自然對數(shù)的底數(shù);(2),其中且
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)函數(shù)的周期性、偶函數(shù)的性質(zhì),結(jié)合零點的定義進行求解即可.【詳解】因為,所以函數(shù)的周期為,當(dāng)時,,即,因為函數(shù)是偶函數(shù)且周期為,所以有,所以在區(qū)間上零點的個數(shù)為,故選:C2、B【解析】對于A、B:由棱柱的定義直接判斷;對于C:由正三棱錐的側(cè)棱長和底面邊長不一定相等,即可判斷;對于D:由球的表面不能展開成平面圖形即可判斷【詳解】對于A:棱柱最少有5個面,則A錯誤;對于B:棱柱的所有側(cè)面都是平行四邊形,則B正確;對于C:正三棱錐的側(cè)棱長和底面邊長不一定相等,則C錯誤;對于D:球的表面不能展開成平面圖形,則D錯誤故選:B3、C【解析】設(shè)里氏級和級地震釋放出的能量分別為和,可得出,利用對數(shù)的運算性質(zhì)可求得的值,即可得解.【詳解】設(shè)里氏級和級地震釋放出的能量分別為和,由已知可得,則,故故選:C.4、D【解析】根據(jù)函數(shù)奇偶性的概念,逐項判斷即可.【詳解】A中,由得,又,所以是偶函數(shù);B中,定義域為R,又,所以是偶函數(shù);C中,定義域為,又,所以是奇函數(shù);D中,定義域為R,且,所以非奇非偶.故選D【點睛】本題主要考查函數(shù)的奇偶性,熟記概念即可,屬于基礎(chǔ)題型.5、B【解析】由余弦函數(shù)的定義計算【詳解】由題意到原點的距離為,所以故選:B6、B【解析】解方程確定集合,然后由交集定義計算【詳解】,∴故選:B7、D【解析】先求出,再由弧長公式求出扇形半徑,代入扇形面積公式計算即可.【詳解】由圖可知,,則該扇形的半徑,故面積.故選:D8、A【解析】根據(jù)所給分段函數(shù)解析式計算可得;【詳解】解:因為,,所以,所以故選:A9、B【解析】根據(jù)相等函數(shù)的判定方法,逐項判斷,即可得出結(jié)果.【詳解】A選項,因為的定義域為,的定義域為,定義域不同,不是同一函數(shù),故A錯;B選項,因為的定義域為,的定義域也為,且與對應(yīng)關(guān)系一致,是同一函數(shù),故B正確;C選項,因為的定義域為,的定義域為,定義域不同,不是同一函數(shù),故C錯;D選項,因為的定義域為,的定義域為,定義域不同,不是同一函數(shù),故D錯.故選:B.10、B【解析】直接根據(jù)集合的交集、并集、補集的定義判斷集合間的關(guān)系,從而求出結(jié)論【詳解】解:由得Venn圖,①;②;③;④;故和命題等價的有①③,故選:B【點睛】本題主要考查集合的包含關(guān)系的判斷及應(yīng)用,考查集合的基本運算,考查了Venn圖的應(yīng)用,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】將原式化為,然后研究函數(shù)在上的值域即可【詳解】解:由,得,令,令,因為,所以,所以,即,因為,所以函數(shù)可化為,該函數(shù)在上單調(diào)遞增,所以,所以,所以,所以的取值范圍是,故答案為:12、(10,12)【解析】不妨設(shè)a<b<c,作出f(x)的圖象,如圖所示:由圖象可知0<a<1<b<10<c<12,由f(a)=f(b)得|lga|=|lgb|,即?lga=lgb,∴l(xiāng)gab=0,則ab=1,∴abc=c,∴abc的取值范圍是(10,12),13、①.②.10【解析】根據(jù)給定信息,求出以O(shè)x為始邊,OP為終邊的角,求出點P的縱坐標即可列出函數(shù)關(guān)系,再解不等式作答.【詳解】依題意,點到x軸距離為0.8m,而,則,從點經(jīng)s運動到點所轉(zhuǎn)過的角為,因此,以O(shè)x為始邊,OP為終邊的角為,點P的縱坐標為,于是得點距離水面的高度,由得:,而,即,解得,對于k的每個取值,,所以關(guān)于的函數(shù)關(guān)系式為,水輪轉(zhuǎn)動的任意一圈內(nèi),點距水面的高度不低于1.6m的時長為10s.故答案為:;10【點睛】關(guān)鍵點睛:涉及三角函數(shù)實際應(yīng)用問題,探求動點坐標,找出該點所在射線為終邊對應(yīng)的角是關(guān)鍵,特別注意,始邊是x軸非負半軸.14、##【解析】運用均值不等式中“1”的妙用即可求解.【詳解】解:因為,,且,所以,當(dāng)且僅當(dāng)時等號成立,故答案為:.15、奇函數(shù)【解析】賦值,可求得,再賦值即可得到,利用奇偶性的定義可判斷奇偶性;【詳解】,令,得,,再令,得,是上的奇函數(shù);【點睛】本題考查了賦值法及奇函數(shù)的定義16、4【解析】利用集合的子集個數(shù)公式求解即可.【詳解】∵,∴集合是集合的子集,∴集合的個數(shù)為,故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)3(2)【解析】(1)利用倍角公式和輔助角公式化簡,結(jié)合三角函數(shù)性質(zhì)作答即可.(2)利用換元法求解即可.【小問1詳解】函數(shù)令解得∴當(dāng),時,函數(shù)取到最大值3.【小問2詳解】∵,∴設(shè),則18、(1)(2)答案見解析(3)證明見解析【解析】(1)由滿足性質(zhì)可得恒成立,取可求,取可求,取可求,取求,由此可求的值;(2)設(shè)滿足,利用零點存在定理證明關(guān)于的方程至少有兩個解,證明至少存在兩個不等的正數(shù),同時使得函數(shù)滿足性質(zhì)和;(3)分別討論,,時函數(shù)的零點的存在性,由此完成證明.【小問1詳解】因為滿足性質(zhì),所以對于任意的x,恒成立.又因為,所以,,,由可得,由可得,所以,.【小問2詳解】若正數(shù)滿足,等價于,記,顯然,,因為,所以,,即.因為的圖像連續(xù)不斷,所以存在,使得,因此,至少存在兩個不等的正數(shù),使得函數(shù)同時滿足性質(zhì)和.【小問3詳解】若,則1即為零點;因為,若,則,矛盾,故,若,則,,,可得.取即可使得,又因為的圖像連續(xù)不斷,所以,當(dāng)時,函數(shù)上存在零點,當(dāng)時,函數(shù)在上存在零點,若,則由,可得,由,可得,由,可得.取即可使得,又因為的圖像連續(xù)不斷,所以,當(dāng)時,函數(shù)在上存在零點,當(dāng)時,函數(shù)在上存在零點,綜上,函數(shù)存在零點.19、2【解析】直接利用指數(shù)冪的運算法則求解即可,化簡過程注意避免出現(xiàn)計算錯誤.【詳解】化簡.【點睛】本題主要考查指數(shù)冪的運算,屬于中檔題.指數(shù)冪運算的四個原則:(1)有括號的先算括號里的,無括號的先做指數(shù)運算;(2)先乘除后加減,負指數(shù)冪化成正指數(shù)冪的倒數(shù);(3)底數(shù)是負數(shù),先確定符號,底數(shù)是小數(shù),先化成分數(shù),底數(shù)是帶分數(shù)的,先化成假分數(shù);(4)若是根式,應(yīng)化為分數(shù)指數(shù)冪,盡可能用冪的形式表示,運用指數(shù)冪的運算性質(zhì)來解答(化簡過程中一定要注意等價性,特別注意開偶次方根時函數(shù)的定義域)20、(1)證明見解析(2)【解析】(1)連結(jié)與交于點,連結(jié),由中位線定理可得,再根據(jù)線面平行的判定定理即可證明結(jié)果;(2)方法一:根據(jù)線面垂直的判定定理,可證明平面;取的中點,易證平面,所以即所求角,再根據(jù)直棱柱的有關(guān)性質(zhì)求即可得到結(jié)果;方法二:根據(jù)線面垂直的判定定理,可證明平面;取的中點,易證平面;所以即與平面所成的角,再根據(jù)直棱柱的有關(guān)性質(zhì)求即可得到結(jié)果.【小問1詳解】證明:如圖一,連結(jié)與交于點,連結(jié).在中,、為中點,∴.又平面,平面,∴平面.圖一【小問2詳解】證明:(方法一)如圖二,圖二∵,為的中點,∴.又,,∴平面.取的中點,又為的中點,∴、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《細菌的生物學(xué)特點:初中微生物課程教案》
- 懸浮地基施工方案(3篇)
- 拆除logo施工方案(3篇)
- 文化廊施工方案(3篇)
- 施工方案報審監(jiān)理(3篇)
- 機房專線施工方案(3篇)
- 橋底防護施工方案(3篇)
- 水閘施工方案視頻(3篇)
- 油漆施工方案圖片(3篇)
- 浮雕壓花施工方案(3篇)
- 第23課 醫(yī)療設(shè)施新功能 課件 2025-2026學(xué)年人教版初中信息科技八年級全一冊
- 砂石骨料生產(chǎn)管理制度
- 2025-2030無人船航運技術(shù)領(lǐng)域市場供需分析及投資評估規(guī)劃分析研究報告
- 系統(tǒng)權(quán)限規(guī)范管理制度
- GB 12801-2025生產(chǎn)過程安全基本要求
- 2025年CFA二級真題解析及答案
- 2026年遼寧醫(yī)藥職業(yè)學(xué)院單招職業(yè)技能考試參考題庫帶答案解析
- 2026年及未來5年市場數(shù)據(jù)中國電子級氫氟酸行業(yè)競爭格局分析及投資戰(zhàn)略咨詢報告
- 2026屆重慶市普通高中英語高三第一學(xué)期期末統(tǒng)考試題含解析
- 電線選型課件
- 2025年海南省公務(wù)員考試真題試卷含答案
評論
0/150
提交評論