2023高考真題數(shù)學(xué)含答案_第1頁(yè)
2023高考真題數(shù)學(xué)含答案_第2頁(yè)
2023高考真題數(shù)學(xué)含答案_第3頁(yè)
2023高考真題數(shù)學(xué)含答案_第4頁(yè)
2023高考真題數(shù)學(xué)含答案_第5頁(yè)
已閱讀5頁(yè),還剩84頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第20頁(yè)/共28頁(yè)2023年北京市普通高等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)一、選擇題:本題共10小題,每小題4分,共40分.在每小題列出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng).1.已知集合,則()A. B.C. D.【答案】A【解析】先化簡(jiǎn)集合,然后根據(jù)交集的定義計(jì)算.【詳解】由題意,,,根據(jù)交集的運(yùn)算可知,.故選:A2.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是,則的共軛復(fù)數(shù)()A. B.C. D.【答案】D【解析】根據(jù)復(fù)數(shù)的幾何意義先求出復(fù)數(shù),然后利用共軛復(fù)數(shù)的定義計(jì)算.【詳解】在復(fù)平面對(duì)應(yīng)的點(diǎn)是,根據(jù)復(fù)數(shù)的幾何意義,,由共軛復(fù)數(shù)的定義可知,.故選:D3.已知向量滿足,則()A. B. C.0 D.1【答案】B【解析】利用平面向量數(shù)量積的運(yùn)算律,數(shù)量積的坐標(biāo)表示求解作答.【詳解】向量滿足,所以.故選:B4.下列函數(shù)中,在區(qū)間上單調(diào)遞增的是()A. B.C. D.【答案】C【解析】利用基本初等函數(shù)的單調(diào)性,結(jié)合復(fù)合函數(shù)的單調(diào)性判斷ABC,舉反例排除D即可.【詳解】對(duì)于A,因?yàn)樵谏蠁握{(diào)遞增,在上單調(diào)遞減,所以在上單調(diào)遞減,故A錯(cuò)誤;對(duì)于B,因?yàn)樵谏蠁握{(diào)遞增,在上單調(diào)遞減,所以在上單調(diào)遞減,故B錯(cuò)誤;對(duì)于C,因?yàn)樵谏蠁握{(diào)遞減,在上單調(diào)遞減,所以在上單調(diào)遞增,故C正確;對(duì)于D,因?yàn)?,,顯然在上不單調(diào),D錯(cuò)誤.故選:C.5.的展開(kāi)式中的系數(shù)為().A. B. C.40 D.80【答案】D【解析】寫(xiě)出的展開(kāi)式的通項(xiàng)即可【詳解】的展開(kāi)式的通項(xiàng)為令得所以的展開(kāi)式中的系數(shù)為故選:D【點(diǎn)睛】本題考查的是二項(xiàng)式展開(kāi)式通項(xiàng)的運(yùn)用,較簡(jiǎn)單.6.已知拋物線的焦點(diǎn)為,點(diǎn)在上.若到直線的距離為5,則()A.7 B.6 C.5 D.4【答案】D【解析】利用拋物線的定義求解即可.【詳解】因?yàn)閽佄锞€的焦點(diǎn),準(zhǔn)線方程為,點(diǎn)在上,所以到準(zhǔn)線的距離為,又到直線的距離為,所以,故.故選:D.7.在中,,則()A. B. C. D.【答案】B【解析】利用正弦定理的邊角變換與余弦定理即可得解.【詳解】因?yàn)?,所以由正弦定理得,即,則,故,又,所以.故選:B.8.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】C【解析】解法一:由化簡(jiǎn)得到即可判斷;解法二:證明充分性可由得到,代入化簡(jiǎn)即可,證明必要性可由去分母,再用完全平方公式即可;解法三:證明充分性可由通分后用配湊法得到完全平方公式,再把代入即可,證明必要性可由通分后用配湊法得到完全平方公式,再把代入,解方程即可.【詳解】解法一:因?yàn)?,且,所以,即,即,所?所以“”是“”的充要條件.解法二:充分性:因?yàn)?,且,所以,所以,所以充分性成立;必要性:因?yàn)?,且,所以,即,即,所?所以必要性成立.所以“”是“”的充要條件.解法三:充分性:因?yàn)?,且,所以,所以充分性成立;必要性:因?yàn)?,且,所以,所以,所以,所以,所以必要性成?所以“”是“”的充要條件.故選:C9.坡屋頂是我國(guó)傳統(tǒng)建筑造型之一,蘊(yùn)含著豐富的數(shù)學(xué)元素.安裝燈帶可以勾勒出建筑輪廓,展現(xiàn)造型之美.如圖,某坡屋頂可視為一個(gè)五面體,其中兩個(gè)面是全等的等腰梯形,兩個(gè)面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面與平面的夾角的正切值均為,則該五面體的所有棱長(zhǎng)之和為()A. B.C. D.【答案】C【解析】先根據(jù)線面角的定義求得,從而依次求,,,,再把所有棱長(zhǎng)相加即可得解.【詳解】如圖,過(guò)做平面,垂足為,過(guò)分別做,,垂足分別為,,連接,由題意得等腰梯形所在的面、等腰三角形所在的面與底面夾角分別為和,所以.因?yàn)槠矫?,平面,所以,因?yàn)?,平面,,所以平面,因?yàn)槠矫?,所以?同理:,又,故四邊形是矩形,所以由得,所以,所以,所以在直角三角形中,在直角三角形中,,,又因?yàn)椋欣忾L(zhǎng)之和為.故選:C10.已知數(shù)列滿足,則()A.當(dāng)時(shí),為遞減數(shù)列,且存在常數(shù),使得恒成立B.當(dāng)時(shí),為遞增數(shù)列,且存在常數(shù),使得恒成立C.當(dāng)時(shí),為遞減數(shù)列,且存在常數(shù),使得恒成立D.當(dāng)時(shí),為遞增數(shù)列,且存在常數(shù),使得恒成立【答案】B【解析】法1:利用數(shù)列歸納法可判斷ACD正誤,利用遞推可判斷數(shù)列的性質(zhì),故可判斷B的正誤.法2:構(gòu)造,利用導(dǎo)數(shù)求得的正負(fù)情況,再利用數(shù)學(xué)歸納法判斷得各選項(xiàng)所在區(qū)間,從而判斷的單調(diào)性;對(duì)于A,構(gòu)造,判斷得,進(jìn)而取推得不恒成立;對(duì)于B,證明所在區(qū)間同時(shí)證得后續(xù)結(jié)論;對(duì)于C,記,取推得不恒成立;對(duì)于D,構(gòu)造,判斷得,進(jìn)而取推得不恒成立.【詳解】法1:因?yàn)?,故,?duì)于A,若,可用數(shù)學(xué)歸納法證明:即,證明:當(dāng)時(shí),,此時(shí)不等關(guān)系成立;設(shè)當(dāng)時(shí),成立,則,故成立,由數(shù)學(xué)歸納法可得成立.而,,,故,故,故為減數(shù)列,注意故,結(jié)合,所以,故,故,若存在常數(shù),使得恒成立,則,故,故,故恒成立僅對(duì)部分成立,故A不成立.對(duì)于B,若可用數(shù)學(xué)歸納法證明:即,證明:當(dāng)時(shí),,此時(shí)不等關(guān)系成立;設(shè)當(dāng)時(shí),成立,則,故成立即由數(shù)學(xué)歸納法可得成立.而,,,故,故,故為增數(shù)列,若,則恒成立,故B正確.對(duì)于C,當(dāng)時(shí),可用數(shù)學(xué)歸納法證明:即,證明:當(dāng)時(shí),,此時(shí)不等關(guān)系成立;設(shè)當(dāng)時(shí),成立,則,故成立即由數(shù)學(xué)歸納法可得成立.而,故,故為減數(shù)列,又,結(jié)合可得:,所以,若,若存在常數(shù),使得恒成立,則恒成立,故,的個(gè)數(shù)有限,矛盾,故C錯(cuò)誤.對(duì)于D,當(dāng)時(shí),可用數(shù)學(xué)歸納法證明:即,證明:當(dāng)時(shí),,此時(shí)不等關(guān)系成立;設(shè)當(dāng)時(shí),成立,則,故成立由數(shù)學(xué)歸納法可得成立.而,故,故為增數(shù)列,又,結(jié)合可得:,所以,若存在常數(shù),使得恒成立,則,故,故,這與n的個(gè)數(shù)有限矛盾,故D錯(cuò)誤.故選:B.法2:因?yàn)?,令,則,令,得或;令,得;所以在和上單調(diào)遞增,在上單調(diào)遞減,令,則,即,解得或或,注意到,,所以結(jié)合的單調(diào)性可知在和上,在和上,對(duì)于A,因?yàn)?,則,當(dāng)時(shí),,,則,假設(shè)當(dāng)時(shí),,當(dāng)時(shí),,則,綜上:,即,因?yàn)樵谏?,所以,則為遞減數(shù)列,因?yàn)椋?,則,因?yàn)殚_(kāi)口向上,對(duì)稱軸為,所以在上單調(diào)遞減,故,所以在上單調(diào)遞增,故,故,即,假設(shè)存在常數(shù),使得恒成立,取,其中,且,因?yàn)?,所以,上式相加得,,則,與恒成立矛盾,故A錯(cuò)誤;對(duì)于B,因?yàn)?,?dāng)時(shí),,,假設(shè)當(dāng)時(shí),,當(dāng)時(shí),因?yàn)?,所以,則,所以,又當(dāng)時(shí),,即,假設(shè)當(dāng)時(shí),,當(dāng)時(shí),因?yàn)?,所以,則,所以,綜上:,因?yàn)樵谏?,所以,所以為遞增數(shù)列,此時(shí),取,滿足題意,故B正確;對(duì)于C,因?yàn)?,則,注意到當(dāng)時(shí),,,猜想當(dāng)時(shí),,當(dāng)與時(shí),與滿足,假設(shè)當(dāng)時(shí),,當(dāng)時(shí),所以,綜上:,易知,則,故,所以,因?yàn)樵谏?,所以,則為遞減數(shù)列,假設(shè)存在常數(shù),使得恒成立,記,取,其中,則,故,所以,即,所以,故不恒成立,故C錯(cuò)誤;對(duì)于D,因?yàn)?,?dāng)時(shí),,則,假設(shè)當(dāng)時(shí),,當(dāng)時(shí),,則,綜上:,因?yàn)樵谏?,所以,所以為遞增數(shù)列,因?yàn)?,令,則,因?yàn)殚_(kāi)口向上,對(duì)稱軸為,所以在上單調(diào)遞增,故,所以,故,即,假設(shè)存在常數(shù),使得恒成立,取,其中,且,因?yàn)?,所以,上式相加得,,則,與恒成立矛盾,故D錯(cuò)誤故選:B.【點(diǎn)睛】本題解決的關(guān)鍵是根據(jù)首項(xiàng)給出與通項(xiàng)性質(zhì)相關(guān)的相應(yīng)的命題,再根據(jù)所得命題結(jié)合放縮法得到通項(xiàng)所滿足的不等式關(guān)系,從而可判斷數(shù)列的上界或下界是否成立.二、填空題:本題共5小題,每小題5分,共25分.11.已知函數(shù),則____________.【答案】1【解析】根據(jù)給定條件,把代入,利用指數(shù)、對(duì)數(shù)運(yùn)算計(jì)算作答.【詳解】函數(shù),所以.故答案為:112.已知雙曲線C的焦點(diǎn)為和,離心率為,則C的方程為_(kāi)___________.【答案】【解析】根據(jù)給定條件,求出雙曲線的實(shí)半軸、虛半軸長(zhǎng),再寫(xiě)出的方程作答.【詳解】令雙曲線的實(shí)半軸、虛半軸長(zhǎng)分別為,顯然雙曲線的中心為原點(diǎn),焦點(diǎn)在x軸上,其半焦距,由雙曲線的離心率為,得,解得,則,所以雙曲線的方程為.故答案為:13.已知命題若為第一象限角,且,則.能說(shuō)明p為假命題的一組的值為_(kāi)_________,_________.【答案】①.②.【解析】根據(jù)正切函數(shù)單調(diào)性以及任意角的定義分析求解.【詳解】因?yàn)樵谏蠁握{(diào)遞增,若,則,取,則,即,令,則,因?yàn)椋瑒t,即,則.不妨取,即滿足題意.故答案為:.14.我國(guó)度量衡的發(fā)展有著悠久的歷史,戰(zhàn)國(guó)時(shí)期就已經(jīng)出現(xiàn)了類似于砝碼的、用來(lái)測(cè)量物體質(zhì)量的“環(huán)權(quán)”.已知9枚環(huán)權(quán)的質(zhì)量(單位:銖)從小到大構(gòu)成項(xiàng)數(shù)為9的數(shù)列,該數(shù)列的前3項(xiàng)成等差數(shù)列,后7項(xiàng)成等比數(shù)列,且,則___________;數(shù)列所有項(xiàng)的和為_(kāi)___________.【答案】①.48②.384【解析】方法一:根據(jù)題意結(jié)合等差、等比數(shù)列的通項(xiàng)公式列式求解,進(jìn)而可求得結(jié)果;方法二:根據(jù)等比中項(xiàng)求,在結(jié)合等差、等比數(shù)列的求和公式運(yùn)算求解.【詳解】方法一:設(shè)前3項(xiàng)的公差為,后7項(xiàng)公比為,則,且,可得,則,即,可得,空1:可得,空2:方法二:空1:因?yàn)闉榈缺葦?shù)列,則,且,所以;又因?yàn)椋瑒t;空2:設(shè)后7項(xiàng)公比為,則,解得,可得,所以.故答案為:48;384.15.設(shè),函數(shù),給出下列四個(gè)結(jié)論:①在區(qū)間上單調(diào)遞減;②當(dāng)時(shí),存在最大值;③設(shè),則;④設(shè).若存在最小值,則a的取值范圍是.其中所有正確結(jié)論的序號(hào)是____________.【答案】②③【解析】先分析的圖像,再逐一分析各結(jié)論;對(duì)于①,取,結(jié)合圖像即可判斷;對(duì)于②,分段討論的取值范圍,從而得以判斷;對(duì)于③,結(jié)合圖像可知的范圍;對(duì)于④,取,結(jié)合圖像可知此時(shí)存在最小值,從而得以判斷.【詳解】依題意,,當(dāng)時(shí),,易知其圖像為一條端點(diǎn)取不到值的單調(diào)遞增的射線;當(dāng)時(shí),,易知其圖像是,圓心為,半徑為的圓在軸上方的圖像(即半圓);當(dāng)時(shí),,易知其圖像是一條端點(diǎn)取不到值的單調(diào)遞減的曲線;對(duì)于①,取,則的圖像如下,顯然,當(dāng),即時(shí),在上單調(diào)遞增,故①錯(cuò)誤;對(duì)于②,當(dāng)時(shí),當(dāng)時(shí),;當(dāng)時(shí),顯然取得最大值;當(dāng)時(shí),,綜上:取得最大值,故②正確;對(duì)于③,結(jié)合圖像,易知在,且接近于處,的距離最小,當(dāng)時(shí),,當(dāng)且接近于處,,此時(shí),,故③正確;對(duì)于④,取,則的圖像如下,因?yàn)椋Y(jié)合圖像可知,要使取得最小值,則點(diǎn)在上,點(diǎn)在,同時(shí)的最小值為點(diǎn)到的距離減去半圓的半徑,此時(shí),因?yàn)樾甭蕿椋瑒t,故直線的方程為,聯(lián)立,解得,則,顯然在上,滿足取得最小值,即也滿足存在最小值,故的取值范圍不僅僅是,故④錯(cuò)誤.故答案為:②③.【點(diǎn)睛】本題解決的關(guān)鍵是分析得的圖像,特別是當(dāng)時(shí),的圖像為半圓,解決命題④時(shí),可取特殊值進(jìn)行排除即可.三、解答題:本題共6小題,共85分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.16.如圖,在三棱錐中,平面,.(1)求證:平面PAB;(2)求二面角的大?。敬鸢浮浚?)證明見(jiàn)解析(2)【解析】(1)先由線面垂直的性質(zhì)證得,再利用勾股定理證得,從而利用線面垂直的判定定理即可得證;(2)結(jié)合(1)中結(jié)論,建立空間直角坐標(biāo)系,分別求得平面與平面的法向量,再利用空間向量夾角余弦的坐標(biāo)表示即可得解.【小問(wèn)1詳解】因?yàn)槠矫嫫矫?,所以,同理,所以為直角三角形,又因?yàn)?,,所以,則為直角三角形,故,又因?yàn)?,,所以平?【小問(wèn)2詳解】由(1)平面,又平面,則,以為原點(diǎn),為軸,過(guò)且與平行的直線為軸,為軸,建立空間直角坐標(biāo)系,如圖,則,所以,設(shè)平面的法向量為,則,即令,則,所以,設(shè)平面的法向量為,則,即,令,則,所以,所以,又因?yàn)槎娼菫殇J二面角,所以二面角的大小為.17.設(shè)函數(shù).(1)若,求的值.(2)已知在區(qū)間上單調(diào)遞增,,再?gòu)臈l件①、條件②、條件③這三個(gè)條件中選擇一個(gè)作為已知,使函數(shù)存在,求的值.條件①:;條件②:;條件③:在區(qū)間上單調(diào)遞減.注:如果選擇的條件不符合要求,第(2)問(wèn)得0分;如果選擇多個(gè)符合要求的條件分別解答,按第一個(gè)解答計(jì)分.【答案】(1).(2)條件①不能使函數(shù)存在;條件②或條件③可解得,.【解析】(1)把代入的解析式求出,再由即可求出的值;(2)若選條件①不合題意;若選條件②,先把的解析式化簡(jiǎn),根據(jù)在上的單調(diào)性及函數(shù)的最值可求出,從而求出的值;把的值代入的解析式,由和即可求出的值;若選條件③:由的單調(diào)性可知在處取得最小值,則與條件②所給的條件一樣,解法與條件②相同.【小問(wèn)1詳解】因?yàn)樗?,因?yàn)椋?【小問(wèn)2詳解】因?yàn)?,所以,所以的最大值為,最小值?若選條件①:因?yàn)榈淖畲笾禐?,最小值為,所以無(wú)解,故條件①不能使函數(shù)存在;若選條件②:因?yàn)樵谏蠁握{(diào)遞增,且,所以,所以,,所以,又因?yàn)?,所以,所以,所以,因?yàn)?,所?所以,;若選條件③:因?yàn)樵谏蠁握{(diào)遞增,在上單調(diào)遞減,所以在處取得最小值,即.以下與條件②相同.18.為研究某種農(nóng)產(chǎn)品價(jià)格變化的規(guī)律,收集得到了該農(nóng)產(chǎn)品連續(xù)40天的價(jià)格變化數(shù)據(jù),如下表所示.在描述價(jià)格變化時(shí),用“+”表示“上漲”,即當(dāng)天價(jià)格比前一天價(jià)格高;用“-”表示“下跌”,即當(dāng)天價(jià)格比前一天價(jià)格低;用“0”表示“不變”,即當(dāng)天價(jià)格與前一天價(jià)格相同.時(shí)段價(jià)格變化第1天到第20天-++0++0+0--+-+00+第21天到第40天0++0++0+0++0-+用頻率估計(jì)概率.(1)試估計(jì)該農(nóng)產(chǎn)品價(jià)格“上漲”的概率;(2)假設(shè)該農(nóng)產(chǎn)品每天的價(jià)格變化是相互獨(dú)立的.在未來(lái)的日子里任取4天,試估計(jì)該農(nóng)產(chǎn)品價(jià)格在這4天中2天“上漲”、1天“下跌”、1天“不變”的概率;(3)假設(shè)該農(nóng)產(chǎn)品每天的價(jià)格變化只受前一天價(jià)格變化的影響.判斷第41天該農(nóng)產(chǎn)品價(jià)格“上漲”“下跌”和“不變”的概率估計(jì)值哪個(gè)最大.(結(jié)論不要求證明)【答案】(1)(2)(3)不變【解析】(1)計(jì)算表格中的的次數(shù),然后根據(jù)古典概型進(jìn)行計(jì)算;(2)分別計(jì)算出表格中上漲,不變,下跌的概率后進(jìn)行計(jì)算;(3)通過(guò)統(tǒng)計(jì)表格中前一次上漲,后一次發(fā)生的各種情況進(jìn)行推斷第天的情況.【小問(wèn)1詳解】根據(jù)表格數(shù)據(jù)可以看出,天里,有個(gè),也就是有天是上漲的,根據(jù)古典概型的計(jì)算公式,農(nóng)產(chǎn)品價(jià)格上漲的概率為:【小問(wèn)2詳解】在這天里,有天上漲,天下跌,天不變,也就是上漲,下跌,不變的概率分別是,,,于是未來(lái)任取天,天上漲,天下跌,天不變的概率是【小問(wèn)3詳解】由于第天處于上漲狀態(tài),從前次的次上漲進(jìn)行分析,上漲后下一次仍上漲的有次,不變的有次,下跌的有次,因此估計(jì)第次不變概率最大.19.已知橢圓的離心率為,A、C分別是E的上、下頂點(diǎn),B,D分別是的左、右頂點(diǎn),.(1)求方程;(2)設(shè)為第一象限內(nèi)E上的動(dòng)點(diǎn),直線與直線交于點(diǎn),直線與直線交于點(diǎn).求證:.【答案】(1)(2)證明見(jiàn)解析【解析】(1)結(jié)合題意得到,,再結(jié)合,解之即可;(2)依題意求得直線、與的方程,從而求得點(diǎn)的坐標(biāo),進(jìn)而求得,再根據(jù)題意求得,得到,由此得解.【小問(wèn)1詳解】依題意,得,則,又分別為橢圓上下頂點(diǎn),,所以,即,所以,即,則,所以橢圓的方程為.【小問(wèn)2詳解】因?yàn)闄E圓的方程為,所以,因?yàn)闉榈谝幌笙奚系膭?dòng)點(diǎn),設(shè),則,易得,則直線的方程為,,則直線的方程為,聯(lián)立,解得,即,而,則直線的方程為,令,則,解得,即,又,則,,所以,又,即,顯然,與不重合,所以.20.設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.(1)求的值;(2)設(shè)函數(shù),求的單調(diào)區(qū)間;(3)求的極值點(diǎn)個(gè)數(shù).【答案】(1)(2)答案見(jiàn)解析(3)3個(gè)【解析】(1)先對(duì)求導(dǎo),利用導(dǎo)數(shù)的幾何意義得到,,從而得到關(guān)于的方程組,解之即可;(2)由(1)得的解析式,從而求得,利用數(shù)軸穿根法求得與的解,由此求得的單調(diào)區(qū)間;(3)結(jié)合(2)中結(jié)論,利用零點(diǎn)存在定理,依次分類討論區(qū)間,,與上的零點(diǎn)的情況,從而利用導(dǎo)數(shù)與函數(shù)的極值點(diǎn)的關(guān)系求得的極值點(diǎn)個(gè)數(shù).【小問(wèn)1詳解】因?yàn)椋?,因?yàn)樵谔幍那芯€方程為,所以,,則,解得,所以.【小問(wèn)2詳解】由(1)得,則,令,解得,不妨設(shè),,則,易知恒成立,所以令,解得或;令,解得或;所以在,上單調(diào)遞減,在,上單調(diào)遞增,即的單調(diào)遞減區(qū)間為和,單調(diào)遞增區(qū)間為和.【小問(wèn)3詳解】由(1)得,,由(2)知在,上單調(diào)遞減,在,上單調(diào)遞增,當(dāng)時(shí),,,即所以在上存在唯一零點(diǎn),不妨設(shè)為,則,此時(shí),當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增;所以在上有一個(gè)極小值點(diǎn);當(dāng)時(shí),在上單調(diào)遞減,則,故,所以在上存在唯一零點(diǎn),不妨設(shè)為,則,此時(shí),當(dāng)時(shí),,則單調(diào)遞增;當(dāng)時(shí),,則單調(diào)遞減;所以在上有一個(gè)極大值點(diǎn);當(dāng)時(shí),在上單調(diào)遞增,則,故,所以在上存在唯一零點(diǎn),不妨設(shè)為,則,此時(shí),當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增;所以在上有一個(gè)極小值點(diǎn);當(dāng)時(shí),,所以,則單調(diào)遞增,所以在上無(wú)極值點(diǎn);綜上:在和上各有一個(gè)極小值點(diǎn),在上有一個(gè)極大值點(diǎn),共有個(gè)極值點(diǎn).【點(diǎn)睛】本題第3小題的解題關(guān)鍵是判斷與的正負(fù)情況,充分利用的單調(diào)性,尋找特殊點(diǎn)判斷即可得解.21.已知數(shù)列的項(xiàng)數(shù)均為m,且的前n項(xiàng)和分別為,并規(guī)定.對(duì)于,定義,其中,表示數(shù)集M中最大的數(shù).(1)若,求的值;(2)若,且,求;(3)證明:存在,滿足使得.【答案】(1),,,(2)(3)證明見(jiàn)詳解【解析】(1)先求,根據(jù)題意分析求解;(2)根據(jù)題意題意分析可得,利用反證可得,在結(jié)合等差數(shù)列運(yùn)算求解;(3)討論的大小,根據(jù)題意結(jié)合反證法分析證明.【小問(wèn)1詳解】由題意可知:,當(dāng)時(shí),則,故;當(dāng)時(shí),則,故;當(dāng)時(shí),則故;當(dāng)時(shí),則,故;綜上所述:,,,.【小問(wèn)2詳解】由題意可知:,且,因?yàn)?,且,則對(duì)任意恒成立,所以,又因?yàn)?,則,即,可得,反證:假設(shè)滿足的最小正整數(shù)為,當(dāng)時(shí),則;當(dāng)時(shí),則,則,又因,則,假設(shè)不成立,故,即數(shù)列是以首項(xiàng)為1,公差為1的等差數(shù)列,所以.【小問(wèn)3詳解】因?yàn)榫鶠檎麛?shù),則均為遞增數(shù)列,(?。┤?,則可取,滿足使得;(ⅱ)若,則,構(gòu)建,由題意可得:,且為整數(shù),反證,假設(shè)存在正整數(shù),使得,則,可得,這與相矛盾,故對(duì)任意,均有.①若存在正整數(shù),使得,即,可取,滿足,使得;②若不存在正整數(shù),使得,因?yàn)?,且,所以必存在,使得,即,可得,可取,滿足,使得;(ⅲ)若,定義,則,構(gòu)建,由題意可得:,且為整數(shù),反證,假設(shè)存在正整數(shù),使得,則,可得,這與相矛盾,故對(duì)任意,均有.①若存在正整數(shù),使得,即,可取,即滿足,使得;②若不存在正整數(shù),使得,因?yàn)?,且,所以必存在,使得,即,可得,可取,滿足,使得.綜上所述:存在使得.2023年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(全國(guó)甲卷)理科數(shù)學(xué)一、選擇題1.設(shè)全集,集合,()A. B.C. D.【答案】A【解析】根據(jù)整數(shù)集的分類,以及補(bǔ)集的運(yùn)算即可解出.因?yàn)檎麛?shù)集,,所以,.故選:A.2.設(shè),則()A.-1 B.0· C.1 D.2【答案】C【解析】根據(jù)復(fù)數(shù)的代數(shù)運(yùn)算以及復(fù)數(shù)相等即可解出.【詳解】因?yàn)?,所以,解得:.故選:C.3.執(zhí)行下面的程序框圖,輸出的()A.21 B.34 C.55 D.89【答案】B【解析】根據(jù)程序框圖模擬運(yùn)行,即可解出.【詳解】當(dāng)時(shí),判斷框條件滿足,第一次執(zhí)行循環(huán)體,,,;當(dāng)時(shí),判斷框條件滿足,第二次執(zhí)行循環(huán)體,,,;當(dāng)時(shí),判斷框條件滿足,第三次執(zhí)行循環(huán)體,,,;當(dāng)時(shí),判斷框條件不滿足,跳出循環(huán)體,輸出.故選:B.4.已知向量滿足,且,則()A. B. C. D.【答案】D【解析】作出圖形,根據(jù)幾何意義求解.【詳解】因?yàn)?所以,即,即,所以.如圖,設(shè),由題知,是等腰直角三角形,AB邊上的高,所以,,.故選:D.5.設(shè)等比數(shù)列的各項(xiàng)均為正數(shù),前n項(xiàng)和,若,,則()A. B. C.15 D.40【答案】C【解析】根據(jù)題意列出關(guān)于的方程,計(jì)算出,即可求出.【詳解】由題知,即,即,即.由題知,所以.所以.故選:C.6.某地的中學(xué)生中有的同學(xué)愛(ài)好滑冰,的同學(xué)愛(ài)好滑雪,的同學(xué)愛(ài)好滑冰或愛(ài)好滑雪.在該地的中學(xué)生中隨機(jī)調(diào)查一位同學(xué),若該同學(xué)愛(ài)好滑雪,則該同學(xué)也愛(ài)好滑冰的概率為()A.0.8 B.0.6 C.0.5 D.0.4【答案】A【解析】先算出同時(shí)愛(ài)好兩項(xiàng)的概率,利用條件概率的知識(shí)求解.【詳解】同時(shí)愛(ài)好兩項(xiàng)的概率為,記“該同學(xué)愛(ài)好滑雪”為事件,記“該同學(xué)愛(ài)好滑冰”為事件,則,所以.故選:.7.設(shè)甲:,乙:,則()A.甲是乙的充分條件但不是必要條件 B.甲是乙的必要條件但不是充分條件C.甲是乙的充要條件 D.甲既不是乙的充分條件也不是乙的必要條件【答案】B【解析】根據(jù)充分條件、必要條件的概念及同角三角函數(shù)的基本關(guān)系得解.【詳解】當(dāng)時(shí),例如但,即推不出;當(dāng)時(shí),,即能推出.綜上可知,甲是乙的必要不充分條件.故選:B8.已知雙曲線的離心率為,C的一條漸近線與圓交于A,B兩點(diǎn),則()A. B. C. D.【答案】D【解析】根據(jù)離心率得出雙曲線漸近線方程,再由圓心到直線的距離及圓半徑可求弦長(zhǎng).【詳解】由,則,解得,所以雙曲線的一條漸近線為,則圓心到漸近線的距離,所以弦長(zhǎng).故選:D9.現(xiàn)有5名志愿者報(bào)名參加公益活動(dòng),在某一星期的星期六、星期日兩天,每天從這5人中安排2人參加公益活動(dòng),則恰有1人在這兩天都參加的不同安排方式共有()A.120 B.60 C.30 D.20【答案】B【解析】利用分類加法原理,分類討論五名志愿者連續(xù)參加兩天公益活動(dòng)的情況,即可得解.【詳解】不妨記五名志愿者為,假設(shè)連續(xù)參加了兩天公益活動(dòng),再?gòu)氖S嗟?人抽取2人各參加星期六與星期天的公益活動(dòng),共有種方法,同理:連續(xù)參加了兩天公益活動(dòng),也各有種方法,所以恰有1人連續(xù)參加了兩天公益活動(dòng)的選擇種數(shù)有種.故選:B10.函數(shù)的圖象由函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度得到,則的圖象與直線的交點(diǎn)個(gè)數(shù)為()A.1 B.2 C.3 D.4【答案】C【解析】先利用三角函數(shù)平移的性質(zhì)求得,再作出與的部分大致圖像,考慮特殊點(diǎn)處與的大小關(guān)系,從而精確圖像,由此得解.【詳解】因?yàn)橄蜃笃揭苽€(gè)單位所得函數(shù)為,所以,而顯然過(guò)與兩點(diǎn),作出與的部分大致圖像如下,考慮,即處與的大小關(guān)系,當(dāng)時(shí),,;當(dāng)時(shí),,;當(dāng)時(shí),,;所以由圖可知,與的交點(diǎn)個(gè)數(shù)為.故選:C.11.已知四棱錐的底面是邊長(zhǎng)為4的正方形,,則的面積為()A. B. C. D.【答案】C【解析】法一:利用全等三角形的證明方法依次證得,,從而得到,再在中利用余弦定理求得,從而求得,由此在中利用余弦定理與三角形面積公式即可得解;法二:先在中利用余弦定理求得,,從而求得,再利用空間向量的數(shù)量積運(yùn)算與余弦定理得到關(guān)于的方程組,從而求得,由此在中利用余弦定理與三角形面積公式即可得解.【詳解】法一:連結(jié)交于,連結(jié),則為的中點(diǎn),如圖,因?yàn)榈酌鏋檎叫危?,所以,則,又,,所以,則,又,,所以,則,在中,,則由余弦定理可得,故,則,故在中,,所以,又,所以,所以的面積為.法二:連結(jié)交于,連結(jié),則為的中點(diǎn),如圖,因?yàn)榈酌鏋檎叫危?,所以,在中,,則由余弦定理可得,故,所以,則,不妨記,因?yàn)椋?,即,則,整理得①,又在中,,即,則②,兩式相加得,故,故在中,,所以,又,所以,所以的面積為.故選:C.12.設(shè)O為坐標(biāo)原點(diǎn),為橢圓的兩個(gè)焦點(diǎn),點(diǎn)P在C上,,則()A. B. C. D.【答案】B【解析】方法一:根據(jù)焦點(diǎn)三角形面積公式求出的面積,即可得到點(diǎn)的坐標(biāo),從而得出的值;方法二:利用橢圓的定義以及余弦定理求出,再結(jié)合中線的向量公式以及數(shù)量積即可求出;方法三:利用橢圓的定義以及余弦定理求出,即可根據(jù)中線定理求出.【詳解】方法一:設(shè),所以,由,解得:,由橢圓方程可知,,所以,,解得:,即,因此.故選:B.方法二:因?yàn)棰?,,即②,?lián)立①②,解得:,而,所以,即.故選:B.方法三:因?yàn)棰伲?,即②,?lián)立①②,解得:,由中線定理可知,,易知,解得:.故選:B.【點(diǎn)睛】本題根據(jù)求解的目標(biāo)可以選擇利用橢圓中的二級(jí)結(jié)論焦點(diǎn)三角形的面積公式快速解出,也可以常規(guī)利用定義結(jié)合余弦定理,以及向量的數(shù)量積解決中線問(wèn)題的方式解決,還可以直接用中線定理解決,難度不是很大.二、填空題13.若為偶函數(shù),則________.【答案】2【解析】利用偶函數(shù)的性質(zhì)得到,從而求得,再檢驗(yàn)即可得解.【詳解】因?yàn)闉榕己瘮?shù),定義域?yàn)?,所以,即,則,故,此時(shí),所以,又定義域?yàn)?,故為偶函?shù),所以.故答案為:2.14.若x,y滿足約束條件,設(shè)的最大值為_(kāi)___________.【答案】15【解析】由約束條件作出可行域,根據(jù)線性規(guī)劃求最值即可.【詳解】作出可行域,如圖,由圖可知,當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),有最大值,由可得,即,所以.故答案為:1515.在正方體中,E,F(xiàn)分別為AB,的中點(diǎn),以EF為直徑的球的球面與該正方體的棱共有____________個(gè)公共點(diǎn).【答案】12【解析】根據(jù)正方體的對(duì)稱性,可知球心到各棱距離相等,故可得解.【詳解】不妨設(shè)正方體棱長(zhǎng)為2,中點(diǎn)為,取,中點(diǎn),側(cè)面中心為,連接,如圖,由題意可知,為球心,在正方體中,,即,則球心到的距離為,所以球與棱相切,球面與棱只有1個(gè)交點(diǎn),同理,根據(jù)正方體的對(duì)稱性知,其余各棱和球面也只有1個(gè)交點(diǎn),所以以EF為直徑的球面與正方體棱的交點(diǎn)總數(shù)為12.故答案為:1216.在中,,的角平分線交BC于D,則_________.【答案】【解析】方法一:利用余弦定理求出,再根據(jù)等面積法求出;方法二:利用余弦定理求出,再根據(jù)正弦定理求出,即可根據(jù)三角形的特征求出.【詳解】如圖所示:記,方法一:由余弦定理可得,,因?yàn)椋獾茫?,由可得,,解得:.故答案為:.方法二:由余弦定理可得,,因?yàn)?,解得:,由正弦定理可得,,解得:,,因?yàn)?,所以,,又,所以,即.故答案為:.【點(diǎn)睛】本題壓軸相對(duì)比較簡(jiǎn)單,既可以利用三角形的面積公式解決角平分線問(wèn)題,也可以用角平分定義結(jié)合正弦定理、余弦定理求解,知識(shí)技能考查常規(guī).三、解答題17.設(shè)為數(shù)列的前n項(xiàng)和,已知.(1)求的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.【答案】(1)(2)【解析】(1)根據(jù)即可求出;(2)根據(jù)錯(cuò)位相減法即可解出.【小問(wèn)1詳解】因?yàn)椋?dāng)時(shí),,即;當(dāng)時(shí),,即,當(dāng)時(shí),,所以,化簡(jiǎn)得:,當(dāng)時(shí),,即,當(dāng)時(shí)都滿足上式,所以.【小問(wèn)2詳解】因?yàn)?,所以,,兩式相減得,,,即,.18.如圖,在三棱柱中,底面ABC,,到平面的距離為1.(1)證明:;(2)已知與的距離為2,求與平面所成角的正弦值.【答案】(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)線面垂直,面面垂直的判定與性質(zhì)定理可得平面,再由勾股定理求出為中點(diǎn),即可得證;(2)利用直角三角形求出的長(zhǎng)及點(diǎn)到面的距離,根據(jù)線面角定義直接可得正弦值.【小問(wèn)1詳解】如圖,底面,面,,又,平面,,平面ACC1A1,又平面,平面平面,過(guò)作交于,又平面平面,平面,平面到平面的距離為1,,在中,,設(shè),則,為直角三角形,且,,,,,解得,,【小問(wèn)2詳解】,,過(guò)B作,交于D,則為中點(diǎn),由直線與距離為2,所以,,,在,,延長(zhǎng),使,連接,由知四邊形為平行四邊形,,平面,又平面,則在中,,,在中,,,,又到平面距離也為1,所以與平面所成角的正弦值為.19.一項(xiàng)試驗(yàn)旨在研究臭氧效應(yīng).實(shí)驗(yàn)方案如下:選40只小白鼠,隨機(jī)地將其中20只分配到實(shí)驗(yàn)組,另外20只分配到對(duì)照組,實(shí)驗(yàn)組的小白鼠飼養(yǎng)在高濃度臭氧環(huán)境,對(duì)照組的小白鼠飼養(yǎng)在正常環(huán)境,一段時(shí)間后統(tǒng)計(jì)每只小白鼠體重的增加量(單位:g).(1)設(shè)表示指定的兩只小白鼠中分配到對(duì)照組的只數(shù),求的分布列和數(shù)學(xué)期望;(2)實(shí)驗(yàn)結(jié)果如下:對(duì)照組的小白鼠體重的增加量從小到大排序?yàn)椋?5218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2實(shí)驗(yàn)組的小白鼠體重的增加量從小到大排序?yàn)椋?.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(i)求40只小鼠體重的增加量的中位數(shù)m,再分別統(tǒng)計(jì)兩樣本中小于m與不小于的數(shù)據(jù)的個(gè)數(shù),完成如下列聯(lián)表:對(duì)照組實(shí)驗(yàn)組(ii)根據(jù)(i)中的列聯(lián)表,能否有95%的把握認(rèn)為小白鼠在高濃度臭氧環(huán)境中與正常環(huán)境中體重的增加量有差異.附:0.1000.0500.0102.7063.8416635【答案】(1)分布列見(jiàn)解析,(2)(i);列聯(lián)表見(jiàn)解析,(ii)能【解析】(1)利用超幾何分布的知識(shí)即可求得分布列及數(shù)學(xué)期望;(2)(i)根據(jù)中位數(shù)的定義即可求得,從而求得列聯(lián)表;(ii)利用獨(dú)立性檢驗(yàn)的卡方計(jì)算進(jìn)行檢驗(yàn),即可得解.【小問(wèn)1詳解】依題意,的可能取值為,則,,,所以的分布列為:故.【小問(wèn)2詳解】(i)依題意,可知這40只小白鼠體重增量的中位數(shù)是將兩組數(shù)據(jù)合在一起,從小到大排后第20位與第21位數(shù)據(jù)的平均數(shù),觀察數(shù)據(jù)可得第20位為,第21位數(shù)據(jù)為,所以,故列聯(lián)表為:

合計(jì)對(duì)照組61420實(shí)驗(yàn)組14620合計(jì)202040(ii)由(i)可得,,所以能有的把握認(rèn)為小白鼠在高濃度臭氧環(huán)境中與正常環(huán)境中體重的增加量有差異.20.已知直線與拋物線交于兩點(diǎn),且.(1)求;(2)設(shè)F為C的焦點(diǎn),M,N為C上兩點(diǎn),,求面積的最小值.【答案】(1)(2)【解析】(1)利用直線與拋物線的位置關(guān)系,聯(lián)立直線和拋物線方程求出弦長(zhǎng)即可得出;(2)設(shè)直線:,利用,找到關(guān)系,以及的面積表達(dá)式,再結(jié)合函數(shù)的性質(zhì)即可求出其最小值.【小問(wèn)1詳解】設(shè),由可得,,所以,所以,即,因?yàn)椋獾茫海拘?wèn)2詳解】因?yàn)?,顯然直線的斜率不可能為零,設(shè)直線:,,由可得,,所以,,,因?yàn)椋?,即,亦即,將代入得,,,所以,且,解得或.設(shè)點(diǎn)到直線的距離為,所以,,所以的面積,而或,所以,當(dāng)時(shí),的面積.【點(diǎn)睛】本題解題關(guān)鍵是根據(jù)向量的數(shù)量積為零找到的關(guān)系,一是為了減元,二是通過(guò)相互的制約關(guān)系找到各自的范圍,為得到的三角形面積公式提供定義域支持,從而求出面積的最小值.21.已知函數(shù)(1)當(dāng)時(shí),討論的單調(diào)性;(2)若恒成立,求a的取值范圍.【答案】(1)答案見(jiàn)解析.(2)【解析】(1)求導(dǎo),然后令,討論導(dǎo)數(shù)的符號(hào)即可;(2)構(gòu)造,計(jì)算的最大值,然后與0比較大小,得出的分界點(diǎn),再對(duì)討論即可.【小問(wèn)1詳解】令,則則當(dāng)當(dāng),即.當(dāng),即.所以在上單調(diào)遞增,在上單調(diào)遞減【小問(wèn)2詳解】設(shè)設(shè)所以.若,即在上單調(diào)遞減,所以.所以當(dāng),符合題意.若當(dāng),所以..所以,使得,即,使得.當(dāng),即當(dāng)單調(diào)遞增.所以當(dāng),不合題意.綜上,的取值范圍為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題采取了換元,注意復(fù)合函數(shù)的單調(diào)性在定義域內(nèi)是減函數(shù),若,當(dāng),對(duì)應(yīng)當(dāng).四、選做題22.已知點(diǎn),直線(t為參數(shù)),為的傾斜角,l與x軸正半軸,y軸正半軸分別交于A,B兩點(diǎn),且.(1)求;(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求l的極坐標(biāo)方程.【答案】(1)(2)【解析】(1)根據(jù)的幾何意義即可解出;(2)求出直線的普通方程,再根據(jù)直角坐標(biāo)和極坐標(biāo)互化公式即可解出.【小問(wèn)1詳解】因?yàn)榕c軸,軸正半軸交于兩點(diǎn),所以,令,,令,,所以,所以,即,解得,因?yàn)椋裕拘?wèn)2詳解】由(1)可知,直線的斜率為,且過(guò)點(diǎn),所以直線的普通方程為:,即,由可得直線的極坐標(biāo)方程為.23.設(shè),函數(shù).(1)求不等式的解集;(2)若曲線與軸所圍成的圖形的面積為2,求.【答案】(1)(2)2【解析】(1)分和討論即可;(2)寫(xiě)出分段函數(shù),畫(huà)出草圖,表達(dá)面積解方程即可.【小問(wèn)1詳解】若,則,即,解得,即,若,則,解得,即,綜上,不等式的解集為.【小問(wèn)2詳解】.畫(huà)出的草圖,則與軸圍成,的高為,所以,所以,解得.2023年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(全國(guó)甲卷)文科數(shù)學(xué)注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上.2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào).回答非選擇題時(shí),將答案寫(xiě)在答題卡上.寫(xiě)在本試卷上無(wú)效.3.考試結(jié)束后,將本試卷和答題卡一并交回.一、選擇題:本題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.設(shè)全集,集合,則()A. B. C. D.【答案】A【解析】利用集合的交并補(bǔ)運(yùn)算即可得解.【詳解】因?yàn)槿?,集合,所以,又,所以,故選:A.2.()A. B.1 C. D.【答案】C【解析】利用復(fù)數(shù)的四則運(yùn)算求解即可.【詳解】故選:C.3.已知向量,則()A. B. C. D.【答案】B【解析】利用平面向量模與數(shù)量積的坐標(biāo)表示分別求得,從而利用平面向量余弦的運(yùn)算公式即可得解.【詳解】因?yàn)?,所以,則,,所以.故選:B.4.某校文藝部有4名學(xué)生,其中高一、高二年級(jí)各2名.從這4名學(xué)生中隨機(jī)選2名組織校文藝匯演,則這2名學(xué)生來(lái)自不同年級(jí)的概率為()A. B. C. D.【答案】D【解析】利用古典概率的概率公式,結(jié)合組合的知識(shí)即可得解.【詳解】依題意,從這4名學(xué)生中隨機(jī)選2名組織校文藝匯演,總的基本事件有件,其中這2名學(xué)生來(lái)自不同年級(jí)的基本事件有,所以這2名學(xué)生來(lái)自不同年級(jí)的概率為.故選:D.5.記為等差數(shù)列的前項(xiàng)和.若,則()A.25 B.22 C.20 D.15【答案】C【解析】方法一:根據(jù)題意直接求出等差數(shù)列公差和首項(xiàng),再根據(jù)前項(xiàng)和公式即可解出;方法二:根據(jù)等差數(shù)列的性質(zhì)求出等差數(shù)列的公差,再根據(jù)前項(xiàng)和公式的性質(zhì)即可解出.【詳解】方法一:設(shè)等差數(shù)列的公差為,首項(xiàng)為,依題意可得,,即,又,解得:,所以.故選:C.方法二:,,所以,,從而,于是,所以.故選:C.6.執(zhí)行下面的程序框圖,輸出的()A.21 B.34 C.55 D.89【答案】B【解析】根據(jù)程序框圖模擬運(yùn)行,即可解出.【詳解】當(dāng)時(shí),判斷框條件滿足,第一次執(zhí)行循環(huán)體,,,;當(dāng)時(shí),判斷框條件滿足,第二次執(zhí)行循環(huán)體,,,;當(dāng)時(shí),判斷框條件滿足,第三次執(zhí)行循環(huán)體,,,;當(dāng)時(shí),判斷框條件不滿足,跳出循環(huán)體,輸出.故選:B.7.設(shè)為橢圓的兩個(gè)焦點(diǎn),點(diǎn)在上,若,則()A.1 B.2 C.4 D.5【答案】B【解析】方法一:根據(jù)焦點(diǎn)三角形面積公式求出的面積,即可解出;方法二:根據(jù)橢圓的定義以及勾股定理即可解出.【詳解】方法一:因?yàn)椋?,從而,所以.故選:B.方法二:因?yàn)椋?,由橢圓方程可知,,所以,又,平方得:,所以.故選:B.8.曲線在點(diǎn)處的切線方程為()A. B. C. D.【答案】C【解析】先由切點(diǎn)設(shè)切線方程,再求函數(shù)的導(dǎo)數(shù),把切點(diǎn)的橫坐標(biāo)代入導(dǎo)數(shù)得到切線的斜率,代入所設(shè)方程即可求解.【詳解】設(shè)曲線在點(diǎn)處的切線方程為,因?yàn)?,所以,所以所以所以曲線在點(diǎn)處的切線方程為.故選:C9.已知雙曲線的離心率為,C的一條漸近線與圓交于A,B兩點(diǎn),則()A. B. C. D.【答案】D【解析】根據(jù)離心率得出雙曲線漸近線方程,再由圓心到直線的距離及圓半徑可求弦長(zhǎng).【詳解】由,則,解得,所以雙曲線的一條漸近線為,則圓心到漸近線的距離,所以弦長(zhǎng).故選:D10.在三棱錐中,是邊長(zhǎng)為2的等邊三角形,,則該棱錐的體積為()A.1 B. C.2 D.3【答案】A【解析】證明平面,分割三棱錐為共底面兩個(gè)小三棱錐,其高之和為AB得解.【詳解】取中點(diǎn),連接,如圖,是邊長(zhǎng)為2的等邊三角形,,,又平面,,平面,又,,故,即,所以,故選:A11.已知函數(shù).記,則()A. B. C. D.【答案】A【解析】利用作差法比較自變量的大小,再根據(jù)指數(shù)函數(shù)的單調(diào)性及二次函數(shù)的性質(zhì)判斷即可.【詳解】令,則開(kāi)口向下,對(duì)稱軸為,因?yàn)?,而,所以,即由二次函?shù)性質(zhì)知,因?yàn)?,而,即,所以,綜上,,又為增函數(shù),故,即.故選:A.12.函數(shù)的圖象由函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度得到,則的圖象與直線的交點(diǎn)個(gè)數(shù)為()A.1 B.2 C.3 D.4【答案】C【解析】先利用三角函數(shù)平移的性質(zhì)求得,再作出與的部分大致圖像,考慮特殊點(diǎn)處與的大小關(guān)系,從而精確圖像,由此得解.【詳解】因?yàn)橄蜃笃揭苽€(gè)單位所得函數(shù)為,所以,而顯然過(guò)與兩點(diǎn),作出與的部分大致圖像如下,考慮,即處與的大小關(guān)系,當(dāng)時(shí),,;當(dāng)時(shí),,;當(dāng)時(shí),,;所以由圖可知,與的交點(diǎn)個(gè)數(shù)為.故選:C.二、填空題:本大題共4小題,每小題5分,共20分.13.記為等比數(shù)列的前項(xiàng)和.若,則的公比為_(kāi)_______.【答案】【解析】先分析,再由等比數(shù)列的前項(xiàng)和公式和平方差公式化簡(jiǎn)即可求出公比.【詳解】若,則由得,則,不合題意.所以.當(dāng)時(shí),因?yàn)?,所以,即,即,即,解?故答案為:14.若為偶函數(shù),則________.【答案】2【解析】利用偶函數(shù)的性質(zhì)得到,從而求得,再檢驗(yàn)即可得解.【詳解】因?yàn)闉榕己瘮?shù),定義域?yàn)?,所以,即,則,故,此時(shí),所以,又定義域?yàn)?,故為偶函?shù),所以.故答案:2.15.若x,y滿足約束條件,設(shè)的最大值為_(kāi)___________.【答案】15【解析】由約束條件作出可行域,根據(jù)線性規(guī)劃求最值即可.【詳解】作出可行域,如圖,由圖可知,當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),有最大值,由可得,即,所以.故答案為:1516.在正方體中,為的中點(diǎn),若該正方體的棱與球的球面有公共點(diǎn),則球的半徑的取值范圍是________.【答案】【解析】當(dāng)球是正方體的外接球時(shí)半徑最大,當(dāng)邊長(zhǎng)為的正方形是球的大圓的內(nèi)接正方形時(shí)半徑達(dá)到最小.【詳解】設(shè)球的半徑為.當(dāng)球是正方體的外接球時(shí),恰好經(jīng)過(guò)正方體的每個(gè)頂點(diǎn),所求的球的半徑最大,若半徑變得更大,球會(huì)包含正方體,導(dǎo)致球面和棱沒(méi)有交點(diǎn),正方體的外接球直徑為體對(duì)角線長(zhǎng),即,故;分別取側(cè)棱的中點(diǎn),顯然四邊形是邊長(zhǎng)為的正方形,且為正方形的對(duì)角線交點(diǎn),連接,則,當(dāng)球的一個(gè)大圓恰好是四邊形的外接圓,球的半徑達(dá)到最小,即的最小值為.綜上,.故答案為:三、解答題:共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.第17~21題為必考題,每個(gè)試題考生都必須作答.第22、23題為選考題,考生根據(jù)要求作答.(一)必考題:共60分.17.記的內(nèi)角的對(duì)邊分別為,已知.(1)求;(2)若,求面積.【答案】(1)(2)【解析】(1)根據(jù)余弦定理即可解出;(2)由(1)可知,只需求出即可得到三角形面積,對(duì)等式恒等變換,即可解出.【小問(wèn)1詳解】因?yàn)椋裕獾茫海拘?wèn)2詳解】由正弦定理可得,變形可得:,即,而,所以,又,所以,故的面積為.18.如圖,在三棱柱中,平面.(1)證明:平面平面;(2)設(shè),求四棱錐的高.【答案】(1)證明見(jiàn)解析.(2)【解析】(1)由平面得,又因?yàn)?,可證平面,從而證得平面平面;(2)過(guò)點(diǎn)作,可證四棱錐的高為,由三角形全等可證,從而證得為中點(diǎn),設(shè),由勾股定理可求出,再由勾股定理即可求.【小問(wèn)1詳解】證明:因?yàn)槠矫?,平?所以,又因?yàn)?,即,平面?所以平面,又因?yàn)槠矫?所以平面平面.【小問(wèn)2詳解】如圖,過(guò)點(diǎn)作,垂足為.因?yàn)槠矫嫫矫妫矫嫫矫?,平面,所以平面,所以四棱錐的高為.因?yàn)槠矫?,平?所以,,又因?yàn)椋瑸楣策叄耘c全等,所以.設(shè),則,所以為中點(diǎn),,又因?yàn)?所以,即,解得,所以,所以四棱錐的高為.19.一項(xiàng)試驗(yàn)旨在研究臭氧效應(yīng),試驗(yàn)方案如下:選40只小白鼠,隨機(jī)地將其中20只分配到試驗(yàn)組,另外20只分配到對(duì)照組,試驗(yàn)組的小白鼠飼養(yǎng)在高濃度臭氧環(huán)境,對(duì)照組的小白鼠飼養(yǎng)在正常環(huán)境,一段時(shí)間后統(tǒng)計(jì)每只小白鼠體重的增加量(單位:g).試驗(yàn)結(jié)果如下:對(duì)照組的小白鼠體重的增加量從小到大排序?yàn)?5.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2試驗(yàn)組的小白鼠體重的增加量從小到大排序?yàn)?.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)計(jì)算試驗(yàn)組的樣本平均數(shù);(2)(?。┣?0只小白鼠體重的增加量的中位數(shù)m

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論