2026屆山東省即墨區(qū)重點高中數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第1頁
2026屆山東省即墨區(qū)重點高中數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第2頁
2026屆山東省即墨區(qū)重點高中數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第3頁
2026屆山東省即墨區(qū)重點高中數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第4頁
2026屆山東省即墨區(qū)重點高中數(shù)學高二上期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆山東省即墨區(qū)重點高中數(shù)學高二上期末學業(yè)水平測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是等比數(shù)列,則()A.數(shù)列是等差數(shù)列 B.數(shù)列是等比數(shù)列C.數(shù)列是等差數(shù)列 D.數(shù)列是等比數(shù)列2.現(xiàn)有4本不同的書全部分給甲、乙、丙3人,每人至少一本,則不同的分法有()A.12種 B.24種C.36種 D.48種3.已知函數(shù).設命題的定義域為,命題的值域為.若為真,為假,則實數(shù)的取值范圍是()A. B.C. D.4.雙曲線型自然通風塔外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,如圖所示,它的最小半徑為米,上口半徑為米,下口半徑為米,高為24米,則該雙曲線的離心率為()A.2 B.C. D.5.方程表示的曲線為焦點在y軸上的橢圓,則k的取值范圍是()A. B.C.或 D.6.已知數(shù)列滿足,,令,若對于任意不等式恒成立,則實數(shù)t的取值范圍為()A. B.C. D.7.已知直線l的方向向量,平面α的一個法向量為,則直線l與平面α的位置關系是()A.平行 B.垂直C.在平面內(nèi) D.平行或在平面內(nèi)8.已知等差數(shù)列滿足,,則()A. B.C. D.9.早在古希臘時期,亞歷山大的科學家赫倫就發(fā)現(xiàn):光從一點直接傳播到另一點選擇最短路徑,即這兩點間的線段.若光從一點不是直接傳播到另一點,而是經(jīng)由一面鏡子(即便鏡面是曲面)反射到另一點,仍然選擇最短路徑.已知曲線,且將假設為能起完全反射作用的曲面鏡,若光從點射出,經(jīng)由上一點反射到點,則()A. B.C. D.10.若雙曲線離心率為,過點,則該雙曲線的方程為()A. B.C. D.11.已知函數(shù)為偶函數(shù),則在處的切線方程為()A. B.C. D.12.設太陽光線垂直于平面,在陽光下任意轉(zhuǎn)動棱長為一個單位的立方體,則它在平面上的投影面積的最大值是()A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知在△中,角A,B,C的對邊分別是a,b,c,若△的面積為2,邊上中線的長為.且,則△外接圓的面積為___________14.某次實驗得到如下7組數(shù)據(jù),通過判斷知道與具有線性相關性,其線性回歸方程為,則______.(參考公式:)12345676.06.26.36.46.46.76.815.設,若直線與直線平行,則的值是________16.已知點,,點P在x軸上,且,則點P的坐標為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在長方體中,,.點E在上,且(1)求證:平面;(2)求二面角的余弦值18.(12分)已知拋物線的焦點為F,直線l過點(1)若點F到直線l的距離為,求直線l的斜率;(2)設A,B為拋物線上兩點,且AB不與x軸垂直,若線段AB的垂直平分線恰過點M,求證:線段AB中點的橫坐標為定值19.(12分)已知直線與雙曲線相交于、兩點.(1)當時,求;(2)是否存在實數(shù),使以為直徑的圓經(jīng)過坐標原點?若存在,求出的值;若不存在,說明理由.20.(12分)芯片作為在集成電路上的載體,廣泛應用在手機、軍工、航天等多個領域,是能夠影響一個國家現(xiàn)代工業(yè)的重要因素.根據(jù)市場調(diào)研與統(tǒng)計,某公司七年時間里在芯片技術上的研發(fā)投入x(億元)與收益y(億元)的數(shù)據(jù)統(tǒng)計如下:(1)根據(jù)折線圖的數(shù)據(jù),求y關于x的線性回歸方程(系數(shù)精確到整數(shù)部分);(2)為鼓勵科技創(chuàng)新,當研發(fā)技術投入不少于16億元時,國家給予公司補貼5億元,預測當芯片的研發(fā)投入為17億元時公司的實際收益附:其回歸方程的斜率和截距的最小二乘法估計分別為,.參考數(shù)據(jù),21.(12分)設橢圓的左,右焦點分別為,其離心率為,且點在C上.(1)求C的方程;(2)O為坐標原點,P為C上任意一點.若M為的中點,過M且平行于的直線l交橢圓C于A,B兩點,是否存在實數(shù),使得?若存在,求值;若不存在,說明理由.22.(10分)已知動點到點的距離與點到直線的距離相等.(1)求動點的軌跡方程;(2)若過點且斜率為的直線與動點的軌跡交于、兩點,求三角形AOB的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】取,可判斷AC選項;利用等比數(shù)列的定義可判斷B選項;取可判斷D選項.【詳解】若,則、無意義,A錯C錯;設等比數(shù)列的公比為,則,(常數(shù)),故數(shù)列是等比數(shù)列,B對;取,則,數(shù)列為等比數(shù)列,因為,,,且,所以,數(shù)列不是等比數(shù)列,D錯.故選:B.2、C【解析】先把4本書按2,1,1分為3組,再全排列求解.【詳解】先把4本書按2,1,1分為3組,再全排列,則有種分法,故選:C3、C【解析】根據(jù)一元二次不等式恒成立和二次函數(shù)值域可求得為真命題時的取值范圍,根據(jù)和的真假性可知一真一假,分類討論可得結(jié)果.【詳解】若命題為真,則在上恒成立,,;若命題為真,則的值域包含,則或,;為真,為假,一真一假,若真假,則;若假真,則;綜上所述:實數(shù)的取值范圍為.故選:C.4、A【解析】以的中點О為坐標原點,建立平面直角坐標系,設雙曲線的方程為,設,,代入雙曲線的方程,求得,得到,進而求得雙曲線的離心率.【詳解】以的中點О為坐標原點,建立如圖所示的平面直角坐標系,則,設雙曲線的方程為,則,可設,,又由,在雙曲線上,所以,解得,,即,所以該雙曲線的離心率為.故選:A.第II卷5、D【解析】根據(jù)曲線為焦點在y軸上的橢圓可得出答案.【詳解】因為方程表示的曲線為焦點在y軸上的橢圓,所以,解得.故選:D.6、D【解析】根據(jù)遞推關系,利用裂項相消法,累加法求出,可得,原不等式轉(zhuǎn)化為恒成立求解即可.【詳解】,,,由累加法可得,又,,符合上式,,,對于任意不等式恒成立,則,解得.故選:D7、D【解析】根據(jù)題意,結(jié)合線面位置關系的向量判斷方法,即可求解.【詳解】根據(jù)題意,因為,所以,所以直線l與平面α的位置關系是平行或在平面內(nèi)故選:D8、D【解析】根據(jù)等差數(shù)列的通項公式求出公差,再結(jié)合即可得的值.【詳解】因為是等差數(shù)列,設公差為,所以,即,所以,所以,故選:D.9、B【解析】記橢圓的右焦點為,根據(jù)橢圓定義,得到,由題中條件,確定本題的本質(zhì)即是求的最小值,結(jié)合題中數(shù)據(jù),即可求出結(jié)果.【詳解】記橢圓的右焦點為,根據(jù)橢圓的定義可得,,所以,因為,當且僅當三點共線時,,即;由題意可得,求的值,即是求最短路徑,即求的最小值,所以的最小值為,因此.故選:B.【點睛】思路點睛:求解橢圓上動點到一焦點和一定點距離和的最小值或差的最大值時,一般需要利用橢圓的定義,將問題轉(zhuǎn)化為動點與另一焦點以及該定點距離和的最值問題來求解即可.10、B【解析】分析可得,再將點代入雙曲線的方程,求出的值,即可得出雙曲線的標準方程.【詳解】,則,,則雙曲線的方程為,將點的坐標代入雙曲線的方程可得,解得,故,因此,雙曲線的方程為.故選:B11、A【解析】根據(jù)函數(shù)是偶函數(shù)可得,可求出,求出函數(shù)在處的導數(shù)值即為切線斜率,即可求出切線方程.【詳解】函數(shù)為偶函數(shù),,即,解得,,則,,且,切線方程為,整理得.故選:A.【點睛】本題考查函數(shù)奇偶性的應用,考查利用導數(shù)求切線方程,屬于基礎題.12、C【解析】確定正方體投影面積最大時,是投影面與平面AB'C平行,從而求出投影面積的最大值.【詳解】設正方體投影最大時,是投影面與平面AB'C平行,三個面的投影為兩個全等的菱形,其對角線為,即投影面上三條對角線構(gòu)成邊長為的等邊三角形,如圖所示,所以投影面積為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】由已知,結(jié)合正弦定理邊角關系及三角形內(nèi)角的性質(zhì)可得,再根據(jù)三角形面積公式、余弦定理列方程求邊長b、c,應用余弦定理求邊長a,根據(jù)正弦定理求外接圓半徑,再用圓的面積公式求面積.【詳解】由題設及正弦定理邊角關系有,又,∴,∴,∴.又,∴,即又據(jù)題意,得,且,∴或,故或,∴△外接圓的半徑或,∴△外接圓的面積為或故答案為:或14、9##【解析】求得樣本中心點的坐標,代入回歸直線,即可求得.詳解】根據(jù)表格數(shù)據(jù)可得:故,解得.故答案為:.15、【解析】先通過討論分成斜率存在和不存在兩種情況,然后再按照兩直線平行的判定方法求解即可.【詳解】由已知可得,當時,兩直線分別為和,此時,兩直線不平行;當時,要使得兩直線平行,即,解得,.故答案為:16、【解析】設,由,可得,求解即可【詳解】設,由故解得:則點P的坐標為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,分別寫出,,的坐標,證明,,即可得證;(2)由(1)知,的法向量為,直接寫出平面法向量,按照公式求解即可.【小問1詳解】在長方體中,以為坐標原點,所在直線分別為軸,軸,軸建立如圖所示空間直角坐標系因為,,所以,,,,,則,,,所以有,,則,,又所以平面小問2詳解】由(1)知平面的法向量為,而平面法向量為所以,由圖知二面角為銳二面角,所以二面角的余弦值為18、(1)(2)證明見詳解.【解析】(1)設出直線方程,根據(jù)點到直線的距離公式,即可求得直線;(2)設出直線方程,聯(lián)立拋物線方程,根據(jù)韋達定理,利用直線垂直,從而得到的斜率關系,即可證明.【詳解】(1)由條件知直線l的斜率存在,設為,則直線l的方程為:,即從而焦點到直線l的距離為,平方化簡得:,故直線斜率為:.(2)證明:設直線AB的方程為,聯(lián)立拋物線方程,消元得:設,,線段AB的中點為,故因為,將M點坐標代入后整理得:即可得:故為定值.即證.【點睛】本題考查拋物線中的定值問題,涉及直線方程的求解,韋達定理,屬綜合基礎題.19、(1);(2)不存在,理由見解析.【解析】(1)當時,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,利用弦長公式可求得;(2)假設存在實數(shù),使以為直徑的圓經(jīng)過坐標原點,設、,將直線與雙曲線的方程聯(lián)立,列出韋達定理,由已知可得出,利用平面向量數(shù)量積的坐標運算結(jié)合韋達定理可得出,即可得出結(jié)論.【小問1詳解】解:設點、,當時,聯(lián)立,可得,,由韋達定理可得,,所以,.【小問2詳解】解:假設存在實數(shù),使以為直徑的圓經(jīng)過坐標原點,設、,聯(lián)立得,由題意可得,解得且,由韋達定理可知,因為以為直徑的圓經(jīng)過坐標原點,則,所以,,整理可得,該方程無實解,故不存在.20、(1)(2)85億元【解析】(1)利用公式和數(shù)據(jù)計算即可(2)代入回歸直線計算即可【小問1詳解】由折線圖中數(shù)據(jù)知,,,因為,所以所以y關于x的線性回歸方程為【小問2詳解】當時,億元,此時公司的實際收益的預測值為億元21、(1);(2).【解析】(1)列出關于a、b、c的方程組求解即可;(2)直線l斜率不存在時,易得λ的值;斜率存在時,設l方程為,聯(lián)立直線l與橢圓C的方程,求出;求出OP方程,聯(lián)立OP方程與橢圓C的方程,求出;代入即可求得λ.【小問1詳解】由已知可得,解得,∴橢圓C的標準方程為.【小問2詳解】若直線的斜率不存在時,,∴;當斜率存在時,設直線l的方程為.聯(lián)立直線l與橢圓方程,消去y,得,∴.∵,設直線的方程為,聯(lián)立直線與橢圓方程,消去y,得,解得.∴,∴,同理,∴,∵,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論