廣西百色民族高級中學2026屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第1頁
廣西百色民族高級中學2026屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第2頁
廣西百色民族高級中學2026屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第3頁
廣西百色民族高級中學2026屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第4頁
廣西百色民族高級中學2026屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西百色民族高級中學2026屆高二數(shù)學第一學期期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)直線與的圖象相交于A、B兩點,則的最小值為()A.3 B.C. D.2.為了防控新冠病毒肺炎疫情,某市疾控中心檢測人員對外來入市人員進行核酸檢測,人員甲、乙均被檢測.設命題為“甲核酸檢測結(jié)果為陰性”,命題為“乙核酸檢測結(jié)果為陰性”,則命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為()A. B.C. D.3.已知,若,是第二象限角,則=()A. B.5C. D.104.一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是()A.5800 B.6000C.6200 D.64005.在空間直角坐標系中,已知點A(1,1,2),B(-3,1,-2),則線段AB的中點坐標是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)6.設雙曲線()的焦距為12,則()A.1 B.2C.3 D.47.在等差數(shù)列中,,,則公差A.1 B.2C.3 D.48.蟋蟀鳴叫可以說是大自然優(yōu)美、和諧的音樂,殊不知蟋蟀鳴叫的頻率(每分鐘鳴叫的次數(shù))與氣溫(單位:℃)存在著較強的線性相關(guān)關(guān)系.某地觀測人員根據(jù)如表的觀測數(shù)據(jù),建立了關(guān)于的線性回歸方程,則下列說法不正確的是()(次數(shù)/分鐘)2030405060(℃)2527.52932.536A.的值是20B.變量,呈正相關(guān)關(guān)系C.若的值增加1,則的值約增加0.25D.當蟋蟀52次/分鳴叫時,該地當時的氣溫預報值為33.5℃9.如圖,某鐵路客運部門設計的從甲地到乙地旅客托運行李的費用c(元)與行李質(zhì)量w(kg)之間的流程圖.已知旅客小李和小張托運行李的質(zhì)量分別為30kg,60kg,且他們托運的行李各自計費,則這兩人托運行李的費用之和為()A.28元 B.33元C.38元 D.48元10.已知等比數(shù)列的公比為,則“是遞增數(shù)列”的一個充分條件是()A. B.C. D.11.已知拋物線:的焦點為,為上一點且在第一象限,以為圓心,為半徑的圓交的準線于,兩點,且,,三點共線,則()A.2 B.4C.6 D.812.已知圓的方程為,則圓心的坐標為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點為拋物線的焦點,,點為拋物線上一動點,當最小時,點恰好在以為焦點的雙曲線上,則該雙曲線的離心率為___________.14.已知過橢圓上的動點作圓(為圓心):的兩條切線,切點分別為,若的最小值為,則橢圓的離心率為______15.橢圓的離心率是______16.若函數(shù)在處有極值,則的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系內(nèi),橢圓E:過點,離心率為(1)求E的方程;(2)設直線(k∈R)與橢圓E交于A,B兩點,在y軸上是否存在定點M,使得對任意實數(shù)k,直線AM,BM的斜率乘積為定值?若存在,求出點M的坐標;若不存在,說明理由18.(12分)2020年10月,中共中央辦公廳、國務院辦公廳印發(fā)了《關(guān)于全面加強和改進新時代學校體育工作的意見》,某地積極開展中小學健康促進行動,發(fā)揮以體育智、以體育心功能,決定在2021年體育中考中再增加一定的分數(shù),規(guī)定:考生須參加立定跳遠、擲實心球、一分鐘跳繩三項測試,其中一分鐘跳繩滿分20分,某校為掌握九年級學生一分鐘跳繩情況,隨機抽取了100名學生測試,其一分一分鐘跳繩個數(shù)成績(分)1617181920頻率(1)若每分鐘跳繩成績不足18分,則認為該學生跳繩成績不及格,求在進行測試的100名學生中跳繩成績不及格的人數(shù)為多少?(2)該學校決定由這次跳繩測試一分鐘跳繩個數(shù)在205以上(包括205)的學生組成“小小教練員"團隊,小明和小華是該團隊的成員,現(xiàn)學校要從該團隊中選派2名同學參加某跳繩比賽,求小明和小華至少有一人被選派的概率19.(12分)2021年7月25日,在東京奧運會自行車公路賽中,奧地利數(shù)學女博士安娜·基秣崔天以3小時52分45秒的成績獲得冠軍,震驚了世界!廣大網(wǎng)友驚呼“學好數(shù)理化,走遍天下都不怕”.某市對中學生的體能測試成績與數(shù)學測試成績進行分析,并從中隨機抽取了200人進行抽樣分析,得到下表(單位:人):體能一般體能優(yōu)秀合計數(shù)學一般5050100數(shù)學優(yōu)秀4060100合計90110200(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.10的前提下認為“體能優(yōu)秀”還是“體能一般”與數(shù)學成績有關(guān)?(結(jié)果精確到小數(shù)點后兩位)(2)①現(xiàn)從抽取的數(shù)學優(yōu)秀的人中,按“體能優(yōu)秀”與“體能一般”這兩類進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人,求其中至少有2人是“體能優(yōu)秀”的概率;②將頻率視為概率,以樣本估計總體,從該市中學生中隨機抽取10人參加座談會,記其中“體能優(yōu)秀”的人數(shù)為X,求X的數(shù)學期望和方差參考公式:,其中參考數(shù)據(jù):0.150.100.050.250.0102.0722.7063.8415.0246.63520.(12分)已知拋物線:()的焦點為,點在上,點在的內(nèi)側(cè),且的最小值為(1)求的方程;(2)過點的直線與拋物線交于不同的兩點,,直線,(為坐標原點)分別交直線于點,記直線,,的斜率分別為,,,若,求的值21.(12分)如圖,四邊形ABCD是正方形,四邊形BEDF是菱形,平面平面.(1)證明:;(2)若,且平面平面BEDF,求平面ADE與平面CDF所成的二面角的正弦值.22.(10分)在數(shù)列中,,.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求出AB坐標,表示出,規(guī)定函數(shù),其中,利用導數(shù)求最小值.【詳解】聯(lián)立解得可得點.聯(lián)立解得可得點.由題意可得解得,令,其中,∴.∴函數(shù)單調(diào)遞減;.因此,的最小值為故選:C【點睛】距離的最值求解:(1)幾何法求最值;(2)代數(shù)法:表示出距離,利用函數(shù)求最值.2、D【解析】表示出和,直接判斷即可.【詳解】命題為“甲核酸檢測結(jié)果為陰性”,則命題為“甲核酸檢測結(jié)果不是陰性”;命題為“乙核酸檢測結(jié)果為陰性”,則命題為“乙核酸檢測結(jié)果不是陰性”.故命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為.故選D.3、D【解析】先由誘導公式及同角函數(shù)關(guān)系得到,再根據(jù)誘導公式化簡,最后由二倍角公式化簡求值即可.【詳解】∵,∴,∵是第二象限角,∴,∴故選:D4、D【解析】解:∵一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,∴當另外兩名員工的工資都小于5300時,中位數(shù)為(5300+5500)÷2=5400,當另外兩名員工的工資都大于5300時,中位數(shù)為(6100+6500)÷2=6300,∴8位員工月工資的中位數(shù)的取值區(qū)間為[5400,6300],∴8位員工月工資的中位數(shù)不可能是6400.本題選擇D選項.5、B【解析】利用中點坐標公式直接求解【詳解】在空間直角坐標系中,點,1,,,1,,則線段的中點坐標是,,,1,故選:B.6、B【解析】根據(jù)可得關(guān)于的方程,解方程即可得答案.【詳解】因為可化為,所以,則.故選:B.【點睛】本題考查已知雙曲線的焦距求參數(shù)的值,考查函數(shù)與方程思想,考查運算求解能力,屬于基礎(chǔ)題.7、B【解析】由,將轉(zhuǎn)化為表示,結(jié)合,即可求解.【詳解】,.故選:B.【點睛】本題考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.8、D【解析】根據(jù)樣本中心過經(jīng)過線性回歸方程、正相關(guān)的性質(zhì)和線性回歸方程的意義進行判斷即可.【詳解】由題意,得,,則,故A正確;由線性回歸方程可知,,變量,呈正相關(guān)關(guān)系,故B正確;若的值增加1,則的值約增加0.25,故C正確;當時,,故D錯誤.故選:D.9、D【解析】根據(jù)程序框圖分別計算小李和小張托運行李的費用,再求和得出答案.【詳解】由程序框圖可知,當時,元;當時,元,所以這兩人托運行李的費用之和為元.故選:D10、D【解析】由等比數(shù)列滿足遞增數(shù)列,可進行和兩項關(guān)系的比較,從而確定和的大小關(guān)系.【詳解】由等比數(shù)列是遞增數(shù)列,若,則,得;若,則,得;所以等比數(shù)列是遞增數(shù)列,或,;故等比數(shù)列是遞增數(shù)列是遞增數(shù)列的一個充分條件為,.故選:D.11、B【解析】根據(jù),,三點共線,結(jié)合點到準線的距離為2,得到,再利用拋物線的定義求解.【詳解】如圖所示:∵,,三點共線,∴是圓的直徑,∴,軸,又為的中點,且點到準線的距離為2,∴,由拋物線的定義可得,故選:B.12、A【解析】將圓的方程配成標準方程,可求得圓心坐標.【詳解】圓的標準方程為,圓心的坐標為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設點,根據(jù)拋物線的定義表示出,將用表示,并逐步轉(zhuǎn)化為一個基本不等式形式,從而求出取最小值時的點的坐標,再根據(jù)雙曲線的定義及離心率的公式求值.【詳解】由題意可得,,,拋物線的準線為,設點,根據(jù)對稱性,不妨設,由拋物線的定義可知,又,所以,當且僅當時,等號成立,此時,設以為焦點的雙曲線方程為,則,即,又,,所以離心率.故答案為:.【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是將的坐標表達式逐漸轉(zhuǎn)化為一個可以用基本不等式求最值的式子,從而找出取最小值時的點的坐標.14、【解析】由橢圓方程和圓的方程可確定橢圓焦點、圓心和半徑;當最小時,可知,此時;根據(jù)橢圓性質(zhì)知,解方程可求得,進而得到離心率.【詳解】由橢圓方程知其右焦點為;由圓的方程知:圓心為,半徑為;當最小時,則最小,即,此時最小;此時,;為橢圓右頂點時,,解得:,橢圓的離心率.故答案為:.15、【解析】求出、、的值,即可得出橢圓的離心率.【詳解】在橢圓中,,,,因此,橢圓的離心率是.故答案為:.16、2或6【解析】由解析式得到導函數(shù),結(jié)合是函數(shù)極值點,即可求的值.【詳解】由,得,因為函數(shù)在處有極值,所以,即,解得2或6.經(jīng)檢驗,2或6滿足題意.故答案為:2或6.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,或者【解析】(1)由離心率和橢圓經(jīng)過的點列出方程組,求出,得到橢圓方程;(2)假設存在,設出直線,聯(lián)立橢圓,利用韋達定理得到兩根之和,兩根之積,結(jié)合斜率乘積為定值得到關(guān)于的方程,求出答案.【小問1詳解】由題可得,,①由,得,即,則,②將②代入①,解得,,故E的方程為【小問2詳解】設存在點滿足條件記,由消去y,得.顯然,判別式>0,所以,,于是===上式為定值,當且僅當,解得或此時,或所以,存在定點或者滿足條件18、(1)14人;(2).【解析】(1)根據(jù)頻率直方表區(qū)間成績及其對應的頻率,即可求每分鐘跳繩成績不足18分的人數(shù).(2)由表格數(shù)據(jù)求出一分鐘跳繩個數(shù)在205以上(包括205)的學生共6人,列舉出六人中選兩人參加比賽的所有情況、小明和小華至少有一個被選派的情況,由古典概型的概率求法即可得小明和小華至少有一人被選派的概率.【詳解】(1)由表可知,每分鐘跳繩成績不足18分,即為成績是16分或17分,在進行測試的100名學生中跳繩成績不及格人數(shù)為:人)(2)一分鐘跳繩個數(shù)在205以上(包括205)的學生頻率為,其人數(shù)為:(人),記小明為,小華為,其余四人為,則在這六人中選兩人參加比賽的所有情況為:,共15種,其中小明和小華至少有一個被選派的情況有:,共9種,小明和小華至少有一人被選派的概率為:.19、(1)不能,理由見解析;(2)①,②,【解析】(1)運用公式求出,比較得出結(jié)論.(2)①先用分層抽樣得到“體能優(yōu)秀”與“體能一般”的人數(shù),再利用公式計算至少有2人是“體能優(yōu)秀”的概率.②根據(jù)已知條件知此分布列為二項分布,故利用數(shù)學期望和方差的公式即可求出答案【小問1詳解】由表格的數(shù)據(jù)可得,,故不能在犯錯誤的概率不超過0.10的前提下認為“體能優(yōu)秀”還是“體能一般”與數(shù)學成績有關(guān).【小問2詳解】①在數(shù)學優(yōu)秀的人群中,“體能優(yōu)秀”與“體能一般”的比例為“體能一般”的人數(shù)為,“體能優(yōu)秀”的人數(shù)為故再從這10人中隨機選出4人,其中至少有2人是“體能優(yōu)秀”的概率為.②由題意可得,隨機抽取一人“體能優(yōu)秀”的概率為,且故,20、(1)(2)【解析】(1)先求出拋物線的準線,作于由拋物線的定義,可得,從而當且僅當,,三點共線時取得最小,得出答案.(2)設,,設:與拋物線方程聯(lián)立,得出韋達定理,設出直線的方程分別與直線的方程聯(lián)立得出點的坐標,進一步得到,的表達式,由條件可得答案.【小問1詳解】的準線為:,作于,則,所以,因為點在的內(nèi)側(cè),所以當且僅當,,三點共線時取得最小值,所以,解得,所以的方程為【小問2詳解】由題意可知的斜率一定存在,且不為0,設:(),聯(lián)立消去得,由,即,得,結(jié)合,知記,,則直線的方程為由得易知,所以同理可得由,可得,即,化簡得,結(jié)合,解得21、(1)證明見解析;(2).【解析】(1)連接交于點,連接,要證明,只需證明平面即可;(2)以D為原點建系,分別求出平面與平面的法向量,再利用向量的夾角公式計算即可得到答案.【詳解】(1)證明:如圖,連接交于點,連接四邊形為正方形,,且為的中點又四邊形為菱形,平面平面又平面OAE.(2)解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論