廣西南寧市馬山縣金倫中學、武鳴縣華僑中學等四校2026屆高一上數(shù)學期末調研模擬試題含解析_第1頁
廣西南寧市馬山縣金倫中學、武鳴縣華僑中學等四校2026屆高一上數(shù)學期末調研模擬試題含解析_第2頁
廣西南寧市馬山縣金倫中學、武鳴縣華僑中學等四校2026屆高一上數(shù)學期末調研模擬試題含解析_第3頁
廣西南寧市馬山縣金倫中學、武鳴縣華僑中學等四校2026屆高一上數(shù)學期末調研模擬試題含解析_第4頁
廣西南寧市馬山縣金倫中學、武鳴縣華僑中學等四校2026屆高一上數(shù)學期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西南寧市馬山縣金倫中學、武鳴縣華僑中學等四校2026屆高一上數(shù)學期末調研模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.不等式的解集為()A.{x|1<x<4} B.{x|﹣1<x<4}C.{x|﹣4<x<1} D.{x|﹣1<x<3}2.函數(shù)()A. B.C. D.3.焦點在y軸上,焦距等于4,離心率等于的橢圓的標準方程是A. B.C. D.4.設函數(shù)則A.1 B.4C.5 D.95.如圖,邊長為a的等邊三角形ABC的中線AF與中位線DE交于點G,已知△A'DE是△ADE繞DE旋轉過程中的一個圖形(A'不與A,F重合),則下列命題中正確的是()①動點A'在平面ABC上的射影在線段AF上;②BC∥平面A'DE;③三棱錐A'-FED的體積有最大值.A.① B.①②C.①②③ D.②③6.已知函數(shù)在區(qū)間上單調遞增,則實數(shù)a的取值范圍為()A. B.C. D.7.下列函數(shù)中,是冪函數(shù)的是()A. B.C. D.8.函數(shù)的定義域是()A. B.C. D.9.“”是“的最小正周期為”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.若函數(shù)的最大值為,最小值為-,則的值為A. B.2C. D.4二、填空題:本大題共6小題,每小題5分,共30分。11.若x,y∈(0,+∞),且x+4y=1,則的最小值為________.12.已知圓:,為圓上一點,、、,則的最大值為______.13.一個棱長為2cm的正方體的頂點都在球面上,則球的體積為_______cm3.14.已知函數(shù),若正實數(shù),滿足,則的最小值是____________15.函數(shù)的零點為_________________.16.函數(shù)的圖像與直線y=a在(0,)上有三個交點,其橫坐標分別為,,,則的取值范圍為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.我們知道,聲音通過空氣傳播時會引起區(qū)域性的壓強值改變.物理學中稱為“聲壓”.用P表示(單位:Pa(帕)):“聲壓級”S(單位:dB(分貝))表示聲壓的相對大小.已知它與“某聲音的聲壓P與基準聲壓的比值的常用對數(shù)(以10為底的對數(shù))值成正比”,即(k是比例系數(shù)).當聲壓級S提高60dB時,聲壓P會變?yōu)樵瓉淼?000倍.(1)求聲壓級S關于聲壓P的函數(shù)解析式;(2)已知兩個不同的聲源產生的聲壓P1,P2疊加后得到的總聲壓,而一般當聲壓級S<45dB時人類是可以正常的學習和休息的.現(xiàn)窗外同時有兩個聲壓級為40dB的聲源,在不考慮其他因素的情況下,請問這兩個聲源疊加后是否會干擾我們正常的學習?并說明理由.(參考數(shù)據(jù):lg2≈0.3)18.設函數(shù).(1)當時,若對于,有恒成立,求取值范圍;(2)已知,若對于一切實數(shù)恒成立,并且存在,使得成立,求的最小值.19.近年來,我國大部分地區(qū)遭遇霧霾天氣,給人們的健康、交通安全等帶來了嚴重影響.經研究發(fā)現(xiàn)工業(yè)廢氣等污染物排放是霧霾形成和持續(xù)的重要因素,污染治理刻不容緩.為此,某工廠新購置并安裝了先進的廢氣處理設備,使產生的廢氣經過過濾后排放,以降低對空氣的污染.已知過濾過程中廢氣的污染物數(shù)量(單位:mg/L)與過濾時間(單位:h)間的關系為(,均為非零常數(shù),e為自然對數(shù)的底數(shù)),其中為時的污染物數(shù)量.若經過5h過濾后還剩余90%的污染物.(1)求常數(shù)的值;(2)試計算污染物減少到40%至少需要多長時間.(精確到1h,參考數(shù)據(jù):,,,,)20.已知,.(Ⅰ)求證:函數(shù)在上是增函數(shù);(Ⅱ)若,求實數(shù)的取值范圍.21.如圖,在三棱錐中,平面平面,為等邊三角形,且,,分別為,中點(1)求證:平面;(2)求證:平面平面;(3)求三棱錐的體積

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】把不等式化為,求出解集即可【詳解】解:不等式可化為,即,解得﹣1<x<4,所以不等式的解集為{x|﹣1<x<4}故選:B【點評】本題考查了一元二次不等式的解法,是基礎題2、A【解析】由于函數(shù)為偶函數(shù)又過(0,0),排除B,C,D,所以直接選A.【考點定位】對圖像的考查其實是對性質的考查,注意函數(shù)的特征即可,屬于簡單題.3、C【解析】設橢圓方程為:,由題意可得:,解得:,則橢圓的標準方程為:.本題選擇D選項4、C【解析】根據(jù)題意,由函數(shù)的解析式求出與的值,相加即可得答案【詳解】根據(jù)題意,函數(shù),則,又由,則,則;故選C【點睛】本題考查對數(shù)的運算,及函數(shù)求值問題,其中解答中熟記對數(shù)的運算,以及合理利用分段函數(shù)的解析式求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題5、C【解析】【思路點撥】注意折疊前DE⊥AF,折疊后其位置關系沒有改變.解:①中由已知可得平面A'FG⊥平面ABC∴點A'在平面ABC上的射影在線段AF上.②BC∥DE,BC?平面A'DE,DE?平面A'DE,∴BC∥平面A'DE.③當平面A'DE⊥平面ABC時,三棱錐A'-FED的體積達到最大.6、D【解析】根據(jù)二次函數(shù)的單調性進行求解即可.【詳解】當時,函數(shù)是實數(shù)集上的減函數(shù),不符合題意;當時,二次函數(shù)的對稱軸為:,由題意有解得故選:D7、B【解析】根據(jù)冪函數(shù)的定義辨析即可【詳解】根據(jù)冪函數(shù)的形式可判斷B正確,A為一次函數(shù),C為指數(shù)函數(shù),D為對數(shù)函數(shù)故選:B8、C【解析】函數(shù)式由兩部分構成,且每一部分都是分式,分母又含有根式,求解時既保證分式有意義,還要保證根式有意義【詳解】解:要使原函數(shù)有意義,需解得,所以函數(shù)的定義域為.故選C【考點】函數(shù)的定義域及其求法【點睛】先把函數(shù)各部分的取值范圍確定下來,然后求它們的交集是解決本題的關鍵9、A【解析】根據(jù)函數(shù)的最小正周期求得,再根據(jù)充分條件和必要條件的定義即可的解.【詳解】解:由的最小正周期為,可得,所以,所以“”是“的最小正周期為”的充分不必要條件.故選:A.10、D【解析】當時取最大值當時取最小值∴,則故選D二、填空題:本大題共6小題,每小題5分,共30分。11、9【解析】由x+4y=1,結合目標式,將x+4y替換目標式中的“1”即可得到基本不等式的形式,進而求得它的最小值,注意等號成立的條件【詳解】∵x,y∈(0,+∞)且x+4y=1∴當且僅當有時取等號∴的最小值為9故答案為:9【點睛】本題考查了基本不等式中“1”的代換,注意基本不等式使用條件“一正二定三相等”,屬于簡單題12、53【解析】設,則,從而求出,再根據(jù)的取值范圍,求出式子的最大值.【詳解】設,因為為圓上一點,則,且,則(當且僅當時取得最大值),故答案為:53.【點睛】本題屬于圓與距離的應用問題,主要考查代數(shù)式的最值求法.解決此類問題一是要將題設條件轉化為相應代數(shù)式;二是要確定代數(shù)式中變量的取值范圍.13、【解析】因為一個正方體的頂點都在球面上,它的棱長為2,所以正方體的外接球的直徑就是正方體的對角線的長度:2所以球的半徑為:所求球的體積為=故答案為:14、9【解析】根據(jù)指數(shù)的運算法則,可求得,根據(jù)基本不等式中“1”的代換,化簡計算,即可得答案.【詳解】由題意得,所以,所以,當且僅當,即時取等號,所以的最小值是9故答案為:915、.【解析】解方程即可.【詳解】令,可得,所以函數(shù)的零點為.故答案為:.【點睛】本題主要考查求函數(shù)的零點,屬基礎題.16、【解析】由x∈(0,)求出,然后,畫出正弦函數(shù)的大致圖像,利用圖像求解即可【詳解】由題意因為x∈(0,),則,可畫出函數(shù)大致的圖則由圖可知當時,方程有三個根,由解得,解得,且點與點關于直線對稱,所以,點與點關于直線對稱,故由圖得,令,當為x∈(0,)時,解得或,所以,,,解得,,則,即.故答案為:【點睛】關鍵點睛:解題關鍵在于利用x∈(0,),則畫出圖像,并利用對稱性求出答案三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)不會,理由見解析【解析】(1)根據(jù)已知條件代入具體數(shù)據(jù)即可求出參數(shù)的值,從而確定解析式(2)將聲壓級代入解析式求出聲壓,根據(jù)求出疊加后的聲壓,代入解析式可求出對應的聲壓級,與45比較大小,判斷是否會干擾學習【小問1詳解】由題意得:,,所以,所以聲壓級S關于聲壓P的函數(shù)解析式為【小問2詳解】不會干擾我們正常的學習,理由如下:將代入得:,所以,解得:,即所以,代入得:,所以不會干擾我們正常的學習.18、(1)(2)【解析】(1)據(jù)題意知,把不等式的恒成立轉化為恒成立,設,則,根據(jù)二次函數(shù)的性質,求得函數(shù)的最大致,即可求解.(2)由題意,根據(jù)二次函數(shù)的性質,求得,進而利用基本不等式,即可求解.【詳解】(1)據(jù)題意知,對于,有恒成立,即恒成立,因此,設,所以,函數(shù)在區(qū)間上是單調遞減的,,(2)由對于一切實數(shù)恒成立,可得,由存在,使得成立可得,,,當且僅當時等號成立,【點睛】本題主要考查了恒成立問題的求解,以及基本不等式求解最值問題,其中解答中掌握利用分離參數(shù)法是求解恒成立問題的重要方法,再合理利用二次函數(shù)的性質,合理利用基本不等式求解是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.19、(1)(2)42h【解析】(1)根據(jù)題意,得到,求解,即可得出結果;(2)根據(jù)(1)的結果,得到,由題意得到,求解,即可得出結果.【詳解】(1)由已知得,當時,;當時,.于是有,解得(或).(2)由(1)知,當時,有,解得.故污染物減少到40%至少需要42h.【點睛】本題主要考查函數(shù)模型的應用,熟記指數(shù)函數(shù)的性質即可,屬于??碱}型.20、(Ⅰ)答案見詳解;(Ⅱ).【解析】(Ⅰ)利用定義法證明函數(shù)單調性;(Ⅱ)判斷函數(shù)奇偶性,并結合的單調性將不等式轉化為不等式組,求出實數(shù)的取值范圍.【詳解】(Ⅰ)任取,則,,即,所以函數(shù)在上是增函數(shù);(Ⅱ)因為函數(shù)定義域為,關于原點對稱,又,所以函數(shù)為奇函數(shù),又,即,即,由(Ⅰ)知函數(shù)在上是增函數(shù),所以,即,故實數(shù)的取值范圍為.【點睛】(1)大題中一般采用定義法證明函數(shù)單調性;(2)利用單調性解不等式問題,一般需要注意三個方面:①注意函數(shù)定義域范圍限制;②確定函數(shù)的單調性;③部分需要結合奇偶性轉化.21、(1)見解析;(2)見解析;(3).【解析】(Ⅰ)利用三角形的中位線得出OM∥VB,利用線面平行的判定定理證明VB∥平面MOC;(Ⅱ)證明OC⊥平面VAB,即可證明平面MOC⊥平面VAB;(Ⅲ)利用等體積法求三棱錐A-MOC的體積即可試題解析:(Ⅰ)證明:∵O,M分別為AB,VA的中點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論