2026屆湖南省長沙市一中、湖南師大附中數(shù)學(xué)高二上期末監(jiān)測試題含解析_第1頁
2026屆湖南省長沙市一中、湖南師大附中數(shù)學(xué)高二上期末監(jiān)測試題含解析_第2頁
2026屆湖南省長沙市一中、湖南師大附中數(shù)學(xué)高二上期末監(jiān)測試題含解析_第3頁
2026屆湖南省長沙市一中、湖南師大附中數(shù)學(xué)高二上期末監(jiān)測試題含解析_第4頁
2026屆湖南省長沙市一中、湖南師大附中數(shù)學(xué)高二上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆湖南省長沙市一中、湖南師大附中數(shù)學(xué)高二上期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在長方體中,若,,則異而直線與所成角的余弦值為()A. B.C. D.2.若橢圓與直線交于兩點(diǎn),過原點(diǎn)與線段AB中點(diǎn)的直線的斜率為,則A. B.C. D.23.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.4.某研究所為了研究近幾年中國留學(xué)生回國人數(shù)的情況,對2014至2018年留學(xué)生回國人數(shù)進(jìn)行了統(tǒng)計(jì),數(shù)據(jù)如下表:年份20142015201620172018年份代碼12345留學(xué)生回國人數(shù)/萬36.540.943.348.151.9根據(jù)上述統(tǒng)計(jì)數(shù)據(jù)求得留學(xué)生回國人數(shù)(單位:萬)與年份代碼滿足的線性回歸方程為,利用回歸方程預(yù)測年留學(xué)生回國人數(shù)為()A.63.14萬 B.64.72萬C.66.81萬 D.66.94萬5.已知O為坐標(biāo)原點(diǎn),=(1,2,3),=(2,1,2),=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),則當(dāng)取得最小值時(shí),點(diǎn)Q的坐標(biāo)為()A. B.C. D.6.已知,則()A. B.C. D.7.正三棱柱各棱長均為為棱的中點(diǎn),則點(diǎn)到平面的距離為()A. B.C. D.18.已知圓柱的底面半徑是1,高是2,那么該圓柱的側(cè)面積是()A.2 B.C. D.9.已知函數(shù)(為自然對數(shù)的底數(shù)),若的零點(diǎn)為,極值點(diǎn)為,則()A. B.0C.1 D.210.在四棱錐P-ABCD中,底面ABCD,,,點(diǎn)E為PA的中點(diǎn),,,,則點(diǎn)B到平面PCD的距離為()A. B.C. D.11.如圖在中,,,在內(nèi)作射線與邊交于點(diǎn),則使得的概率是()A. B.C. D.12.若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知定義在R上的函數(shù)的導(dǎo)函數(shù),且,則實(shí)數(shù)的取值范圍為__________.14.已知分別是平面α,β,γ的法向量,則α,β,γ三個(gè)平面中互相垂直的有________對15.已知點(diǎn)是橢圓上任意一點(diǎn),則點(diǎn)到直線距離的最小值為______16.已知正數(shù)、滿足,則的最大值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2017年5月27日當(dāng)今世界圍棋排名第一的柯潔在與的人機(jī)大戰(zhàn)中中盤棄子認(rèn)輸,至此柯潔與的三場比賽全部結(jié)束,柯潔三戰(zhàn)全負(fù),這次人機(jī)大戰(zhàn)再次引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.(1)請根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為“圍棋迷”與性別有關(guān)?非圍棋迷圍棋迷合計(jì)男女1055合計(jì)(2)為了進(jìn)一步了解“圍棋迷”的圍棋水平,從“圍棋迷”中按性別分層抽樣抽取5名學(xué)生組隊(duì)參加校際交流賽,首輪該校需派兩名學(xué)生出賽,若從5名學(xué)生中隨機(jī)抽取2人出賽,求2人恰好一男一女的概率.參考數(shù)據(jù):0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已知拋物線E:y2=8x(1)求拋物線的焦點(diǎn)及準(zhǔn)線方程;(2)過點(diǎn)P(-1,1)的直線l1與拋物線E只有一個(gè)公共點(diǎn),求直線l1的方程;(3)過點(diǎn)M(2,3)的直線l2與拋物線E交于點(diǎn)A,B.若弦AB的中點(diǎn)為M,求直線l2的方程19.(12分)已知是等差數(shù)列,是等比數(shù)列,且(1)求,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.20.(12分)在平面直角坐標(biāo)系中,雙曲線的左、右兩個(gè)焦點(diǎn)為、,動(dòng)點(diǎn)P滿足(1)求動(dòng)點(diǎn)P的軌跡E的方程;(2)設(shè)過且不垂直于坐標(biāo)軸的動(dòng)直線l交軌跡E于A、B兩點(diǎn),問:線段上是否存在一點(diǎn)D,使得以DA、DB為鄰邊的平行四邊形為菱形?若存在,請給出證明:若不存在,請說明理由21.(12分)已知命題:,在下面①②中任選一個(gè)作為:,使為真命題,求出實(shí)數(shù)a取值范圍.①關(guān)于x的方程有兩個(gè)不等正根;②.(若選①、選②都給出解答,只按第一個(gè)解答計(jì)分.)22.(10分)如圖四棱錐P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等邊三角形.(1)設(shè)面PAB面PDC=l,證明:l//平面ABCD;(2)線段PC內(nèi)是否存在一點(diǎn)E,使面ADE與面ABCD所成角的余弦值為,如果存在,求λ=的值,如果不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】通過平移把異面直線平移到同一平面中,所以取,的中點(diǎn),易知且過中心點(diǎn),所以異而直線與所成角為和所成角,通過解三角形即可得解.【詳解】根據(jù)長方體的對稱性可得體對角線過中心點(diǎn),取,的中點(diǎn),易知且過中心點(diǎn),所以異而直線和所成角為和所成角,連接,在中,,,,所以則異而直線與所成角的余弦值為:,故選:C.2、D【解析】細(xì)查題意,把代入橢圓方程,得,整理得出,設(shè)出點(diǎn)的坐標(biāo),由根與系數(shù)的關(guān)系可以推出線段的中點(diǎn)坐標(biāo),再由過原點(diǎn)與線段的中點(diǎn)的直線的斜率為,進(jìn)而可推導(dǎo)出的值.【詳解】聯(lián)立橢圓方程與直線方程,可得,整理得,設(shè),則,從而線段的中點(diǎn)的橫坐標(biāo)為,縱坐標(biāo),因?yàn)檫^原點(diǎn)與線段中點(diǎn)的直線的斜率為,所以,所以,故選D.【點(diǎn)睛】該題是一道關(guān)于直線與橢圓的綜合性題目,涉及到的知識點(diǎn)有直線與橢圓相交時(shí)對應(yīng)的解題策略,中點(diǎn)坐標(biāo)公式,斜率坐標(biāo)公式,屬于簡單題目.3、B【解析】根據(jù)斜率的取值范圍,結(jié)合來求得傾斜角的取值范圍.【詳解】設(shè)傾斜角為,因?yàn)?,且,所?故選:B4、D【解析】先求出樣本點(diǎn)的中心,代入線性回歸方程即可求出,再將代入線性回歸方程即可得到結(jié)果【詳解】由題意知:,,所以樣本點(diǎn)的中心為,所以,解得:,可得線性回歸方程為,年對應(yīng)的年份代碼為,令,則,所以預(yù)測2022年留學(xué)生回國人數(shù)為66.94萬,故選:D.5、C【解析】設(shè),用表示出,求得的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)求得當(dāng)時(shí),取得最小值,從而求得點(diǎn)的坐標(biāo).【詳解】設(shè),則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當(dāng)λ=時(shí),取得最小值,此時(shí)==,即點(diǎn)Q的坐標(biāo)為.故選:C6、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式及求導(dǎo)法則求導(dǎo)函數(shù)即可.【詳解】.故選:B.7、C【解析】建立空間直角坐標(biāo)系,利用點(diǎn)面距公式求得正確答案.【詳解】設(shè)分別是的中點(diǎn),根據(jù)正三棱柱的性質(zhì)可知兩兩垂直,以為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,.設(shè)平面的法向量為,則,故可設(shè),所以點(diǎn)到平面的距離為.故選:C8、D【解析】由圓柱的側(cè)面積公式直接可得.【詳解】故選:D9、C【解析】令可求得其零點(diǎn),即的值,再利用導(dǎo)數(shù)可求得其極值點(diǎn),即的值,從而可得答案【詳解】解:,當(dāng)時(shí),,即,解得;當(dāng)時(shí),恒成立,的零點(diǎn)為又當(dāng)時(shí),為增函數(shù),故在,上無極值點(diǎn);當(dāng)時(shí),,,當(dāng)時(shí),,當(dāng)時(shí),,時(shí),取到極小值,即的極值點(diǎn),故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)的零點(diǎn),考查分段函數(shù)的應(yīng)用,突出分析運(yùn)算能力的考查,屬于中檔題10、D【解析】為中點(diǎn),連接,易得為平行四邊形,進(jìn)而可知B到平面PCD的距離即為到平面PCD的距離,再由線面垂直的性質(zhì)確定線線垂直,在直角三角形中應(yīng)用勾股定理求相關(guān)線段長,即可得△為直角三角形,最后應(yīng)用等體積法求點(diǎn)面距即可.【詳解】若為中點(diǎn),連接,又E為PA的中點(diǎn),所以,,又,,則且,所以為平行四邊形,即,又面,面,所以面,故B到平面PCD的距離,即為到平面PCD的距離,由底面ABCD,面ABCD,即,,,又,即,,則面,面,即,而,,,,易知:,在△中;在△中;在△中;綜上,,故,又,則.所以B到平面PCD的距離為.故選:D11、C【解析】由題意可得,根據(jù)三角形中“大邊對大角,小邊對小角”的性質(zhì),將轉(zhuǎn)化為求的概率,又因?yàn)?,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因?yàn)?,,則的概率是故選:C【點(diǎn)睛】本題考查幾何概型及其計(jì)算方法的知識,屬于基礎(chǔ)題12、D【解析】由題意,即在區(qū)間上有兩個(gè)異號零點(diǎn),令,利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系判斷單調(diào)性,數(shù)形結(jié)合即可求解【詳解】解:由題意,即在區(qū)間上有兩個(gè)異號零點(diǎn),構(gòu)造函數(shù),則,令,得,令,得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又時(shí),,時(shí),,且,所以,即,所以的范圍故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可得在R上單調(diào)遞增,再由,利用函數(shù)的單調(diào)性轉(zhuǎn)化為關(guān)于的不等式求解【詳解】定義在R上的函數(shù)的導(dǎo)函數(shù),在R上單調(diào)遞增,由,得,即實(shí)數(shù)的取值范圍為故答案為:14、0【解析】計(jì)算每兩個(gè)向量的數(shù)量積,判斷該兩個(gè)向量是否垂直,可得答案.【詳解】因?yàn)?,?所以中任意兩個(gè)向量都不垂直,即α,β,γ中任意兩個(gè)平面都不垂直故答案為:0.15、【解析】求橢圓上平行于的直線方程,利用平行線的距離公式求橢圓上點(diǎn)到直線的最小值.【詳解】設(shè)與橢圓相切,且平行于的直線為,聯(lián)立橢圓整理可得:,則,∴,又兩平行線的距離,∴到直線距離的最小值為.故答案為:.16、【解析】直接利用均值不等式得到答案.【詳解】,當(dāng)即時(shí)等號成立.故答案為【點(diǎn)睛】本題考查了均值不等式,意在考查學(xué)生的計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)沒有95%把握認(rèn)為“圍棋迷”與性別有關(guān).(2).【解析】(1)由頻率分布直方圖求得頻率與頻數(shù),填寫列聯(lián)表,計(jì)算觀測值,對照臨界值得出結(jié)論;(2)根據(jù)分層抽樣原理,用列舉法求出基本事件數(shù),計(jì)算所求的概率值【詳解】(1)由頻率分布直方圖可知,所以在抽取的100人中,“圍棋迷”有25人,從而列聯(lián)表如下非圍棋迷圍棋迷合計(jì)男301545女451055合計(jì)7525100因?yàn)?,所以沒有95%的把握認(rèn)為“圍棋迷”與性別有關(guān).(2)由(1)中列聯(lián)表可知25名“圍棋迷”中有男生15名,女生10名,所以從“圍棋迷”中按性別分層抽樣抽取的5名學(xué)生中,有男生3名,記為,有女生2名,記為.則從5名學(xué)生中隨機(jī)抽取2人出賽,基本事件有:,,,,,,,,,,共10種;其中2人恰好一男一女的有:,,,,,,共6種;故2人恰好一男一女的概率為.【點(diǎn)睛】本題考查了頻率分布直方圖、獨(dú)立性檢驗(yàn)和列舉法求概率的應(yīng)用問題,是基礎(chǔ)題18、(1)焦點(diǎn)為(2,0),準(zhǔn)線方程為x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解析】(1)根據(jù)拋物線的方程及其幾何性質(zhì),求焦點(diǎn)和準(zhǔn)線;(2)分直線l1的斜率為0和不為0兩種情況,根據(jù)直線與拋物線只有一個(gè)公共點(diǎn),由直線與x軸平行或Δ=0,得解;(3)利用點(diǎn)差法求出直線l2的斜率,即可得直線l2的方程【小問1詳解】由題意,p=4,則焦點(diǎn)為(2,0),準(zhǔn)線方程為x=-2【小問2詳解】當(dāng)直線l1的斜率為0時(shí),y=1;當(dāng)直線l1的斜率不為0時(shí),設(shè)直線l1為x+1=m(y-1),聯(lián)立,得y2-8my+8m+8=0,因?yàn)橹本€l1與拋物線E只有一個(gè)公共點(diǎn),所以Δ=64m2-4(8m+8)=0,解得m=1或,所以直線l1的方程為x-y+2=0或2x+y+1=0,綜上,直線l1為y=1或x-y+2=0或2x+y+1=0【小問3詳解】由題意,直線l2的斜率一定存在,設(shè)其斜率為k,A(x1,y1),B(x2,y2),則8x1,8x2,兩式作差得:8(x1-x2),即k,所以直線l2為y-3(x-2),即4x-3y+1=019、(1),;(2).【解析】(1)由,根據(jù)等比數(shù)列的性質(zhì)求得、的值,即可得的通項(xiàng)公式,再根據(jù)列出關(guān)于首項(xiàng)、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項(xiàng)公式;(2)結(jié)合(1)可得,根據(jù)錯(cuò)位相減法,利用等比數(shù)列求和公式可得結(jié)果.【詳解】(1)等比數(shù)列的公比,所以,設(shè)等差數(shù)列公差為因?yàn)?,,所以,即所以?)由(1)知,,因此從而數(shù)列的前項(xiàng)和,,,兩式作差可得,,解得.【點(diǎn)睛】本題主要考查等比數(shù)列和等差數(shù)列的通項(xiàng)、等比數(shù)列的求和公式以及錯(cuò)位相減法求數(shù)列的前項(xiàng)和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用“錯(cuò)位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解,在寫出“”與“”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式.20、(1);(2)存在,理由見解析.【解析】(1)根據(jù)題意用定義法求解軌跡方程;(2)在第一問的基礎(chǔ)上,設(shè)出直線l的方程,聯(lián)立橢圓方程,用韋達(dá)定理表達(dá)出兩根之和,兩根之積,求出直線l的垂直平分線,從而得到D點(diǎn)坐標(biāo),證明出結(jié)論.【小問1詳解】由題意得:,所以,,而,故動(dòng)點(diǎn)P的軌跡E的方程為以點(diǎn)、為焦點(diǎn)的橢圓方程,由得:,,所以動(dòng)點(diǎn)P的軌跡E的方程為;【小問2詳解】存,理由如下:顯然,直線l的斜率存在,設(shè)為,聯(lián)立橢圓方程得:,設(shè),,則,,要想以DA、D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論