黑龍江省綏化市青岡縣一中2026屆高二上數(shù)學(xué)期末檢測(cè)試題含解析_第1頁
黑龍江省綏化市青岡縣一中2026屆高二上數(shù)學(xué)期末檢測(cè)試題含解析_第2頁
黑龍江省綏化市青岡縣一中2026屆高二上數(shù)學(xué)期末檢測(cè)試題含解析_第3頁
黑龍江省綏化市青岡縣一中2026屆高二上數(shù)學(xué)期末檢測(cè)試題含解析_第4頁
黑龍江省綏化市青岡縣一中2026屆高二上數(shù)學(xué)期末檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省綏化市青岡縣一中2026屆高二上數(shù)學(xué)期末檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的右焦點(diǎn)為F,雙曲線C的右支上有一點(diǎn)P滿是(點(diǎn)O為坐標(biāo)原點(diǎn)),那么雙曲線C的離心率為()A. B.C. D.2.在等比數(shù)列中,若,則公比()A. B.C.2 D.33.若,則()A.22 B.19C.-20 D.-194.已知直線的傾斜角為,在軸上的截距為,則此直線的方程為()A. B.C. D.5.某校開學(xué)“迎新”活動(dòng)中要把3名男生,2名女生安排在5個(gè)崗位,每人安排一個(gè)崗位,每個(gè)崗位安排一人,其中甲崗位不能安排女生,則安排方法的種數(shù)為()A.72 B.56C.48 D.366.已知函數(shù),當(dāng)時(shí),函數(shù)在,上均為增函數(shù),則的取值范圍是A. B.C. D.7.已知等差數(shù)列的前項(xiàng)和為,,,,則的值為()A. B.C. D.8.在等比數(shù)列中,若,,則()A. B.C. D.9.已知過點(diǎn)的直線l與圓相交于A,B兩點(diǎn),則的取值范圍是()A. B.C. D.10.雅言傳承文明,經(jīng)典浸潤(rùn)人生.某市舉辦“中華經(jīng)典誦寫講大賽”,大賽分為四類:“誦讀中國”經(jīng)典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學(xué)生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.11.袋子中有四個(gè)小球,分別寫有“文、明、中、國”四個(gè)字,有放回地從中任取一個(gè)小球,直到“中”“國”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“文、明、中、國”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):由此可以估計(jì),恰好第三次就停止的概率為()A. B.C. D.12.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學(xué)為測(cè)量彬塔高度,選取了與塔底在同一水平面內(nèi)的兩個(gè)測(cè)量基點(diǎn)與,現(xiàn)測(cè)得,,,在點(diǎn)測(cè)得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三棱錐中,、、兩兩垂直,且.給出下列四個(gè)命題:①;②;③和的夾角為;④三棱錐的體積為.其中所有正確命題的序號(hào)為______________.14.在等比數(shù)列中,,,則公比________.15.已知雙曲線左、右焦點(diǎn)分別為,,點(diǎn)P是雙曲線左支上一點(diǎn)且,則______16.已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)求的單調(diào)區(qū)間;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,,,記二面角的平面角為(1)若,,求三棱錐的體積;(2)若M為BC的中點(diǎn),求直線AD與EM所成角的取值范圍18.(12分)已知圓D經(jīng)過點(diǎn)A(-1,0),B(3,0),C(1,2).(1)求圓D的標(biāo)準(zhǔn)方程;(2)若直線l:與圓D交于M、N兩點(diǎn),求線段MN的長(zhǎng)度.19.(12分)已知橢圓與橢圓的焦點(diǎn)相同,且橢圓C過點(diǎn)(1)求橢圓C的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,說明理由20.(12分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn);(I)求異面直線A1B,AC1所成角的余弦值;(II)求直線AB1與平面C1AD所成角的正弦值21.(12分)已知直線l過點(diǎn)A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點(diǎn)P,Q,且|PQ|=8,求圓C方程22.(10分)已知數(shù)列滿足各項(xiàng)均不為0,,且,.(1)證明:為等差數(shù)列,并求的通項(xiàng)公式;(2)令,,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】分析焦點(diǎn)三角形即可【詳解】如圖,設(shè)左焦點(diǎn)為,因?yàn)?所以不妨設(shè),則離心率故選:D2、C【解析】由題得,化簡(jiǎn)即得解.【詳解】因?yàn)?,所以,所以,解?故選:C3、C【解析】將所求進(jìn)行變形可得,根據(jù)二項(xiàng)式定理展開式,即可求得答案.【詳解】由題意得所以.故選:C4、D【解析】求出直線的斜率,利用斜截式可得出直線的方程.【詳解】直線的斜率為,由題意可知,所求直線的方程為.故選:D.5、A【解析】以位置優(yōu)先法去安排即可解決.【詳解】第一步:安排甲崗位,由3名男生中任選1人,有3種方法;第二步:安排余下的4個(gè)崗位,由2名女生和余下的2名男生任意安排即可,有種方法故安排方法的種數(shù)為故選:A6、A【解析】由,函數(shù)在上均為增函數(shù),恒成立,,設(shè),則,又設(shè),則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點(diǎn)取最大值為,在點(diǎn)取最小值.則的取值范圍是,故答案選A考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),簡(jiǎn)單的線性規(guī)劃7、A【解析】由可求得,利用可構(gòu)造方程求得.【詳解】,,,,,解得:.故選:A.8、D【解析】由等比數(shù)列的性質(zhì)得,化簡(jiǎn),代入數(shù)值求解.【詳解】因?yàn)閿?shù)列是等比數(shù)列,所以,由題意,所以.故選:D9、D【解析】經(jīng)判斷點(diǎn)在圓內(nèi),與半徑相連,所以與垂直時(shí)弦長(zhǎng)最短,最長(zhǎng)為直徑【詳解】將代入圓方程得:,所以點(diǎn)在圓內(nèi),連接,當(dāng)時(shí),弦長(zhǎng)最短,,所以弦長(zhǎng),當(dāng)過圓心時(shí),最長(zhǎng)等于直徑8,所以的取值范圍是故選:D10、B【解析】由已知條件得基本事件總數(shù)為種,符合條件的事件數(shù)為3中,由古典概型公式直接計(jì)算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.11、A【解析】利用古典概型的概率公式求解.【詳解】因?yàn)殡S機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):,其中恰好第三次就停止包含的基本事件有:023,123,132共3個(gè),所以由此可以估計(jì),恰好第三次就停止的概率為,故選:A12、D【解析】在△中有,再應(yīng)用正弦定理求,再在△中,即可求塔高.【詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】設(shè),以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量數(shù)量積的坐標(biāo)運(yùn)算可判斷①②③④的正誤.【詳解】設(shè),由于、、兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,如下圖所示:則、、、.對(duì)于①,,所以,,①正確;對(duì)于②,,,則,②正確;對(duì)于③,,,,,所以,和的夾角為,③正確;對(duì)于④,,,,則,所以,,而三棱錐的體積為,④錯(cuò)誤.故答案為:①②③.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:在立體幾何中計(jì)算空間向量的相關(guān)問題,可以選擇合適的點(diǎn)與直線建立空間直角坐標(biāo)系,利用空間向量的坐標(biāo)運(yùn)算即可.14、【解析】根據(jù)等比數(shù)列的性質(zhì)求解即可.【詳解】因?yàn)榈缺葦?shù)列中,故,又,故,故.故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的性質(zhì)運(yùn)用,需要注意分析項(xiàng)與公比的正負(fù),屬于基礎(chǔ)題.15、3【解析】根據(jù)雙曲線方程求出,再根據(jù)雙曲線的定義可知,即可得到、,再由正弦定理計(jì)算可得;【詳解】解:因?yàn)殡p曲線為,所以、,因?yàn)辄c(diǎn)P是雙曲線左支上一點(diǎn)且,所以,所以,,在中,由正弦定理可得,所以;故答案為:16、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當(dāng)時(shí),在上恒成立,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;③當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點(diǎn)處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問題,屬于??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)作出輔助線,找到二面角的平面角,利用余弦定理求出,求出底面積和高,進(jìn)而求出三棱錐的體積;(2)利用空間基底表達(dá)出,結(jié)合第一問結(jié)論求出,從而求出答案.【小問1詳解】取AC的中點(diǎn)F,連接FD,F(xiàn)E,由BC=2,則,故DF⊥AC,EF⊥AC,故∠DFE即為二面角的平面角,即,連接DE,作DH⊥FE,因?yàn)?,所以平面DEF,因?yàn)镈H平面DEF,所以AC⊥DH,因?yàn)椋訢H⊥平面ABC,因?yàn)椋晒垂啥ɡ淼茫?,,又,由勾股定理逆定理可知,AE⊥CE,且∠BAC=,,在△ABC中,由余弦定理得:,解得:或(舍去),則,因?yàn)?,,所以△DEF為等邊三角形,則,故三棱錐的體積;【小問2詳解】設(shè),則,,由(1)知:,,取為空間中的一組基底,則,由第一問可知:,則其中,且,,故,由第一問可知,又是的中點(diǎn),所以,所以,因?yàn)槿忮F中,所以,所以,故直線AD與EM所成角范圍為.【點(diǎn)睛】針對(duì)于立體幾何中角度范圍的題目,可以建立空間直角坐標(biāo)系來進(jìn)行求解,若不容易建立坐標(biāo)系時(shí),也可以通過基底表達(dá)出各個(gè)向量,進(jìn)而求出答案.18、(1)(2)【解析】(1)設(shè)圓D的標(biāo)準(zhǔn)方程,利用待定系數(shù)法即可得出答案;(2)利用圓的弦長(zhǎng)公式即可得出答案.【小問1詳解】解:設(shè)圓D的標(biāo)準(zhǔn)方程,由題意可得,解得,所以圓D標(biāo)準(zhǔn)方程為;【小問2詳解】解:由(1)可知圓心,半徑,所以圓心D(1,0)到直線l:的距離,所以.19、(1);(2)存在,.【解析】(1)與焦點(diǎn)相同可求出c,將代入方程結(jié)合a、b、c關(guān)系即可求a和b;(2)直線AB斜率存在時(shí),設(shè)直線AB的方程為,聯(lián)立AB方程與橢圓方程,得到根與系數(shù)的關(guān)系;由得,結(jié)合韋達(dá)定理得k與m的關(guān)系;再由圓與直線相切,即可求其半徑;最后再驗(yàn)證AB斜率不存在時(shí)的情況即可.【小問1詳解】,由題可知,解得點(diǎn),所以橢圓的方程為;【小問2詳解】設(shè),設(shè),代入,整理得,由得,即,由韋達(dá)定理化簡(jiǎn)得,即,設(shè)存在圓與直線相切,則,解得,所以圓的方程為,又若軸時(shí),檢驗(yàn)知滿足條件,故存在圓心在原點(diǎn)的圓符合題意20、(I)(II)【解析】(I)以,,為x,y,z軸建立空間直角坐標(biāo)系A(chǔ)﹣xyz,可得和的坐標(biāo),可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),由可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=,進(jìn)而可得答案解:(I)以,,x,y,z軸建立空間直角坐標(biāo)系A(chǔ)﹣xyz,則可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴異面直線A1B,AC1所成角的余弦值為:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),則可得,即,取x=1可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=∴直線AB1與平面C1AD所成角的正弦值為:考點(diǎn):異面直線及其所成的角;直線與平面所成的角21、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關(guān)系得過直線l的斜率,由點(diǎn)斜式化簡(jiǎn)即可求解l的一般式方程;(2)結(jié)合勾股定理建立弦心距(由點(diǎn)到直線距離公式求解),半弦長(zhǎng),圓半徑的基本關(guān)系,解出,即可求解圓C的方程【小問1詳解】因?yàn)橹本€l與直線4x﹣3y+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論