版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆遼寧省大連海灣高級(jí)中學(xué)高三上數(shù)學(xué)期末質(zhì)量檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義域?yàn)镽的偶函數(shù)滿足任意,有,且當(dāng)時(shí),.若函數(shù)至少有三個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.2.《算數(shù)書(shū)》竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國(guó)現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長(zhǎng)與高,計(jì)算其體積的近似公式.它實(shí)際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.3.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.4.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.35.《周易》是我國(guó)古代典籍,用“卦”描述了天地世間萬(wàn)象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中“”表示一個(gè)陽(yáng)爻,“”表示一個(gè)陰爻)若從八卦中任取兩卦,這兩卦的六個(gè)爻中恰有兩個(gè)陽(yáng)爻的概率為()A. B. C. D.6.已知函數(shù)的圖象與直線的相鄰交點(diǎn)間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.7.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.38.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.09.若點(diǎn)x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-310.已知且,函數(shù),若,則()A.2 B. C. D.11.如圖,在中,,且,則()A.1 B. C. D.12.?dāng)?shù)列的通項(xiàng)公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要二、填空題:本題共4小題,每小題5分,共20分。13.已知邊長(zhǎng)為的菱形中,,現(xiàn)沿對(duì)角線折起,使得二面角為,此時(shí)點(diǎn),,,在同一個(gè)球面上,則該球的表面積為_(kāi)_______.14.(5分)已知橢圓方程為,過(guò)其下焦點(diǎn)作斜率存在的直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),則面積的取值范圍是____________.15.若函數(shù)在和上均單調(diào)遞增,則實(shí)數(shù)的取值范圍為_(kāi)_______.16.已知雙曲線的一條漸近線為,且經(jīng)過(guò)拋物線的焦點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,射線與曲線交于點(diǎn),將射線繞極點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)交曲線于點(diǎn).(1)求曲線的參數(shù)方程;(2)求面積的最大值.18.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.19.(12分)已知函數(shù),,設(shè).(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)設(shè)方程(其中為常數(shù))的兩根分別為,,證明:.(注:是的導(dǎo)函數(shù))20.(12分)在中,角,,的對(duì)邊分別為,,,已知.(1)若,,成等差數(shù)列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,且為正三角形.(1)求點(diǎn),的極坐標(biāo);(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求的最大值.22.(10分)已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)求在上的最大值和最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由題意可得的周期為,當(dāng)時(shí),,令,則的圖像和的圖像至少有個(gè)交點(diǎn),畫(huà)出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域?yàn)镽的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時(shí),,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個(gè)零點(diǎn),則的圖像和的圖像至少有個(gè)交點(diǎn),,若,的圖像和的圖像只有1個(gè)交點(diǎn),不合題意,所以,的圖像和的圖像至少有個(gè)交點(diǎn),則有,即,.故選:B.【點(diǎn)睛】本題考查函數(shù)周期性及其應(yīng)用,解題過(guò)程中用到了數(shù)形結(jié)合方法,這也是高考??嫉臒狳c(diǎn)問(wèn)題,屬于中檔題.2、C【解析】
將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點(diǎn)睛】本題利用古代數(shù)學(xué)問(wèn)題考查圓錐體積計(jì)算的實(shí)際應(yīng)用,考查學(xué)生的運(yùn)算求解能力、創(chuàng)新能力.3、D【解析】
先由是偶函數(shù),得到關(guān)于直線對(duì)稱(chēng);進(jìn)而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因?yàn)槭桥己瘮?shù),所以關(guān)于直線對(duì)稱(chēng);因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時(shí),由得,所以,解得;當(dāng)即時(shí),由得,所以,解得;因此,的解集是.【點(diǎn)睛】本題主要考查由函數(shù)的性質(zhì)解對(duì)應(yīng)不等式,熟記函數(shù)的奇偶性、對(duì)稱(chēng)性、單調(diào)性等性質(zhì)即可,屬于??碱}型.4、A【解析】
分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.5、C【解析】
分類(lèi)討論,僅有一個(gè)陽(yáng)爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個(gè)陽(yáng)爻的有巽、離、兌三卦中取一個(gè),再取沒(méi)有陽(yáng)爻的坤卦,計(jì)算滿足條件的種數(shù),利用古典概型即得解.【詳解】由圖可知,僅有一個(gè)陽(yáng)爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數(shù)是;僅有兩個(gè)陽(yáng)爻的有巽、離、兌三卦,沒(méi)有陽(yáng)爻的是坤卦,此時(shí)取兩卦滿足條件的種數(shù)是,于是所求的概率.故選:C【點(diǎn)睛】本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,分類(lèi)討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.6、A【解析】
由題知,利用求出,再根據(jù)題給定義,化簡(jiǎn)求出的解析式,結(jié)合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點(diǎn)間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點(diǎn)睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關(guān)鍵是對(duì)新定義的理解.7、B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點(diǎn)睛】本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問(wèn)題的能力,難度較易.8、D【解析】分析:因?yàn)轭}設(shè)中給出了的值,要求的值,故應(yīng)考慮兩者之間滿足的關(guān)系.詳解:由題設(shè)有,故有,所以,從而,故選D.點(diǎn)睛:本題考查函數(shù)的表示方法,解題時(shí)注意根據(jù)問(wèn)題的條件和求解的結(jié)論之間的關(guān)系去尋找函數(shù)的解析式要滿足的關(guān)系.9、D【解析】
畫(huà)出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)【詳解】畫(huà)出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)和定點(diǎn)P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點(diǎn)A,B的坐標(biāo)分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點(diǎn)睛】解答本題的關(guān)鍵有兩個(gè):一是根據(jù)數(shù)形結(jié)合的方法求解問(wèn)題,即把y+1x-210、C【解析】
根據(jù)分段函數(shù)的解析式,知當(dāng)時(shí),且,由于,則,即可求出.【詳解】由題意知:當(dāng)時(shí),且由于,則可知:,則,∴,則,則.即.故選:C.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.11、C【解析】
由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點(diǎn)共線,又得到一個(gè)關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點(diǎn)睛】此題考查的是平面向量基本定理的有關(guān)知識(shí),結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.12、A【解析】
根據(jù)遞增數(shù)列的特點(diǎn)可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【詳解】若“是遞增數(shù)列”,則,即,化簡(jiǎn)得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【點(diǎn)睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分別取,的中點(diǎn),,連接,由圖形的對(duì)稱(chēng)性可知球心必在的延長(zhǎng)線上,設(shè)球心為,半徑為,,由勾股定理可得、,再根據(jù)球的面積公式計(jì)算可得;【詳解】如圖,分別取,的中點(diǎn),,連接,則易得,,,,由圖形的對(duì)稱(chēng)性可知球心必在的延長(zhǎng)線上,設(shè)球心為,半徑為,,可得,解得,.故該球的表面積為.故答案為:【點(diǎn)睛】本題考查多面體的外接球的計(jì)算,屬于中檔題.14、【解析】
由題意,,則,得.由題意可設(shè)的方程為,,聯(lián)立方程組,消去得,恒成立,,,則,點(diǎn)到直線的距離為,則,又,則,當(dāng)且僅當(dāng)即時(shí)取等號(hào).故面積的取值范圍是.15、【解析】
化簡(jiǎn)函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可.【詳解】由知,當(dāng)時(shí),在和上單調(diào)遞增,在和上均單調(diào)遞增,,
,
的取值范圍為:.
故答案為:.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題.16、【解析】
設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過(guò)拋物線焦點(diǎn),能求出雙曲線方程.【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過(guò)拋物線焦點(diǎn),∴,∴雙曲線方程為,故答案為:.【點(diǎn)睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡(jiǎn)單性質(zhì)的合理運(yùn)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(為參數(shù));(2).【解析】
(1)根據(jù)伸縮變換結(jié)合曲線的參數(shù)方程可得出曲線的參數(shù)方程;(2)將曲線的方程化為普通方程,然后化為極坐標(biāo)方程,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程,得出和關(guān)于的表達(dá)式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線,則曲線的參數(shù)方程為(為參數(shù));(2)將曲線的參數(shù)方程化為普通方程得,化為極坐標(biāo)方程得,即,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程得,,的面積為,當(dāng)時(shí),的面積取到最大值.【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程的互化,考查了伸縮變換,同時(shí)也考查了利用極坐標(biāo)方程求解三角形面積的最值問(wèn)題,要熟悉極坐標(biāo)方程所適用的基本類(lèi)型,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.18、(1);(2)證明見(jiàn)解析【解析】
(1)將函數(shù)整理為分段函數(shù)形式可得,進(jìn)而分類(lèi)討論求解不等式即可;(2)先利用絕對(duì)值不等式的性質(zhì)得到的最大值為3,再利用均值定理證明即可.【詳解】(1)①當(dāng)時(shí),恒成立,;②當(dāng)時(shí),,即,;③當(dāng)時(shí),顯然不成立,不合題意;綜上所述,不等式的解集為.(2)由(1)知,于是由基本不等式可得(當(dāng)且僅當(dāng)時(shí)取等號(hào))(當(dāng)且僅當(dāng)時(shí)取等號(hào))(當(dāng)且僅當(dāng)時(shí)取等號(hào))上述三式相加可得(當(dāng)且僅當(dāng)時(shí)取等號(hào)),,故得證.【點(diǎn)睛】本題考查解絕對(duì)值不等式和利用均值定理證明不等式,考查絕對(duì)值不等式的最值的應(yīng)用,解題關(guān)鍵是掌握分類(lèi)討論解決帶絕對(duì)值不等式的方法,考查了分析能力和計(jì)算能力,屬于中檔題.19、(1)在上單調(diào)遞增,在上單調(diào)遞減.(2)見(jiàn)解析【解析】
(1)求出導(dǎo)函數(shù),由確定增區(qū)間,由確定減區(qū)間;(2)求出含有參數(shù)的,再求出,由的兩根是,得,計(jì)算,代入后可得結(jié)論.【詳解】解:,函數(shù)的定義域?yàn)?,.?)當(dāng)時(shí),,由得,由得,故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2)證明:由條件可得,,,方程的兩根分別為,,,且,可得..【點(diǎn)睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查導(dǎo)數(shù)的運(yùn)算、方程根的知識(shí).在可導(dǎo)函數(shù)中一般由確定增區(qū)間,由確定減區(qū)間.20、見(jiàn)解析【解析】
(1)因?yàn)椋?,成等差?shù)列,所以,由余弦定理可得,因?yàn)椋?,即,所以.?)若B為直角,則,,由及正弦定理可得,所以,即,上式兩邊同時(shí)平方,可得,所以(*).又,所以,,所以,與(*)矛盾,所以不存在滿足為直角.21、(1),;(2).【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得解;(2)設(shè)點(diǎn)的直角坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為.將此代入曲線的方程,可得點(diǎn)在以為圓心,為半徑的圓上,所以的最大值為,即得解.【詳解】(1)因?yàn)辄c(diǎn)在曲線上,為正三角形,所以點(diǎn)在曲線上.又因?yàn)辄c(diǎn)在曲線上,所以點(diǎn)的極坐標(biāo)是,從而,點(diǎn)的極坐標(biāo)是.(2)由(1)可知,點(diǎn)的直角坐標(biāo)為,B的直角坐標(biāo)為設(shè)點(diǎn)的直角坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為.將此代入曲線的方程,有即點(diǎn)在以為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年容器化部署運(yùn)維技巧指南
- 質(zhì)子治療系統(tǒng)(JQZ2500210)
- 2026甘肅天水長(zhǎng)城果汁集團(tuán)股份有限公司招聘6人備考題庫(kù)及參考答案詳解
- 2026貴州烏當(dāng)區(qū)水務(wù)管理局公益性崗位招聘1人備考題庫(kù)及參考答案詳解一套
- 2026河南鄭州大學(xué)影視創(chuàng)研中心招聘3人備考題庫(kù)及參考答案詳解一套
- 2026年傳統(tǒng)村落保護(hù)活化方法解析
- 職業(yè)噪聲暴露心血管風(fēng)險(xiǎn)的健康促進(jìn)策略-1
- 職業(yè)健康風(fēng)險(xiǎn)評(píng)估方法學(xué)在化工行業(yè)中的國(guó)際經(jīng)驗(yàn)借鑒
- 天門(mén)事業(yè)單位招聘2022年考試模擬試題及答案解析10
- 職業(yè)健康促進(jìn)項(xiàng)目績(jī)效評(píng)估的可持續(xù)體系
- 2025年江蘇省無(wú)錫市梁溪區(qū)八下英語(yǔ)期末統(tǒng)考模擬試題含答案
- GB/T 42186-2022醫(yī)學(xué)檢驗(yàn)生物樣本冷鏈物流運(yùn)作規(guī)范
- 江蘇省南通市2024-2025學(xué)年高一上學(xué)期1月期末考試數(shù)學(xué)試題
- T/CA 105-2019手機(jī)殼套通用規(guī)范
- 以真育責(zé):小學(xué)生責(zé)任教育在求真理念下的探索與實(shí)踐
- 2019營(yíng)口天成消防JB-TB-TC5120 火災(zāi)報(bào)警控制器(聯(lián)動(dòng)型)安裝使用說(shuō)明書(shū)
- 部編版語(yǔ)文六年級(jí)上冊(cè)第一單元綜合素質(zhì)測(cè)評(píng)B卷含答案
- 買(mǎi)賣(mài)肉合同樣本
- 2025屆高考語(yǔ)文復(fù)習(xí):以《百合花》為例掌握小說(shuō)考點(diǎn)
- 面向?qū)ο笙到y(tǒng)分析與設(shè)計(jì)(MOOC版)全套教學(xué)課件
- 2024-2025學(xué)年江蘇省鎮(zhèn)江市六年級(jí)語(yǔ)文上學(xué)期期末真題重組卷
評(píng)論
0/150
提交評(píng)論