版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2026屆陜西省西安電子科技大學附中數(shù)學高一上期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角的終邊上有一點的坐標是,則的值為()A. B.C. D.2.若兩個非零向量,滿足,則與的夾角為()A. B.C. D.3.函數(shù)的定義域是()A. B.C. D.4.已知函數(shù)fx=2x2+bx+c(b,c為實數(shù)),f-10=f12.若方程A.4 B.2C.1 D.15.已知,,則下列不等式正確的是()A. B.C. D.6.正割及余割這兩個概念是由伊朗數(shù)學家阿布爾威發(fā)首先引入的.定義正割,余割.已知為正實數(shù),且對任意的實數(shù)均成立,則的最小值為()A. B.C. D.7.已知函數(shù)是定義在上的奇函數(shù),當時,,則當時,的表達式是()A. B.C. D.8.已知函數(shù),則的值是A. B.C. D.9.方程的根所在的區(qū)間為A. B.C. D.10.已知直線的斜率為1,則直線的傾斜角為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)的圖象過原點,則___________12.如下圖所示的正四棱臺的上底面邊長為2,下底面邊長為8,高為3213.已知函數(shù)若,則實數(shù)___________.14.下列一組數(shù)據(jù)的分位數(shù)是___________.15.我國著名的數(shù)學家華羅庚先生曾說:數(shù)缺形時少直觀,形缺數(shù)時難人微;數(shù)形結(jié)合百般好,隔裂分家萬事休,在數(shù)學學習和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì).請寫出一個在上單調(diào)遞增且圖象關于y軸對稱的函數(shù):________________16.如果,且,則的化簡為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.英國數(shù)學家泰勒發(fā)現(xiàn)了如下公式:,其中,此公式有廣泛的用途,例如利用公式得到一些不等式:當時,,.(1)證明:當時,;(2)設,若區(qū)間滿足當定義域為時,值域也為,則稱為的“和諧區(qū)間”.(i)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由;(ii)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由.18.已知函數(shù)是定義在上奇函數(shù),且.(1)求,的值;(2)判斷在上的單調(diào)性,并用定義證明.19.脫貧是政府關注民生的重要任務,了解居民的實際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機抽取個農(nóng)戶,考察每個農(nóng)戶的年收入與年積蓄的情況進行分析,設第個農(nóng)戶的年收入(萬元),年積蓄(萬元),經(jīng)過數(shù)據(jù)處理得(Ⅰ)已知家庭的年結(jié)余對年收入具有線性相關關系,求線性回歸方程;(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在萬以上,即稱該農(nóng)戶已達小康生活,請預測農(nóng)戶達到小康生活的最低年收入應為多少萬元?附:在中,其中為樣本平均值.20.閩東傳承著中國博大精深的茶文化,講究茶葉茶水的口感,茶水的口感與茶葉類型和水的溫度有關.如果剛泡好的茶水溫度是,空氣的溫度是,那么分鐘后茶水的溫度(單位:)可由公式求得,其中是一個物體與空氣的接觸狀況而定的正常數(shù).現(xiàn)有某種剛泡好的紅茶水溫度是,放在的空氣中自然冷卻,10分鐘以后茶水的溫度是(1)求k的值;(2)經(jīng)驗表明,溫度為的該紅茶水放在的空氣中自然冷卻至時飲用,可以產(chǎn)生最佳口感,那么,大約需要多長時間才能達到最佳飲用口感?(結(jié)果精確到,附:參考值)21.已知函數(shù)(且).(1)判斷函數(shù)的奇偶性,并證明;(2)若,不等式在上恒成立,求實數(shù)的取值范圍;(3)若且在上最小值為,求m的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】求出,由三角函數(shù)定義求得,再由誘導公式得結(jié)論【詳解】依題有,∴,∴.故選:D2、C【解析】根據(jù)數(shù)量積的運算律得到,即可得解;【詳解】解:因為,所以,即,即,所以,即與的夾角為;故選:C3、C【解析】函數(shù)式由兩部分構(gòu)成,且每一部分都是分式,分母又含有根式,求解時既保證分式有意義,還要保證根式有意義【詳解】解:要使原函數(shù)有意義,需解得,所以函數(shù)的定義域為.故選C【考點】函數(shù)的定義域及其求法【點睛】先把函數(shù)各部分的取值范圍確定下來,然后求它們的交集是解決本題的關鍵4、B【解析】由f-10=f12求得b=-4,再由方程fx=0有兩個正實數(shù)根x1【詳解】因為函數(shù)fx=2x2+bx+c(b所以200-10b+c=288+12b+c,解得b=-4,所以fx因為方程fx=0有兩個正實數(shù)根x1所以Δ=16-8c≥0解得0<c≤2,所以1x當c=2時,等號成立,所以其最小值是2,故選:B5、C【解析】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性即可求解.【詳解】由為單調(diào)遞減函數(shù),則,為單調(diào)遞減函數(shù),則,為單調(diào)遞增函數(shù),則故.故選:C【點睛】本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性比較指數(shù)式、對數(shù)式的大小,屬于基礎題.6、D【解析】由參變量分離法可得出,利用基本不等式可求得取值范圍,即可得解.【詳解】由已知可得,可得,因為,則,因為,當且僅當時,等號成立,故.故選:D.7、D【解析】利用函數(shù)的奇偶性求在上的表達式.【詳解】令,則,故,又是定義在上的奇函數(shù),∴.故選:D.8、B【解析】直接利用分段函數(shù),求解函數(shù)值即可【詳解】函數(shù),則f(1)+=log210++1=故選B【點睛】本題考查分段函數(shù)的應用,函數(shù)值的求法,考查計算能力9、C【解析】令函數(shù),則方程的根即為函數(shù)的零點再根據(jù)函數(shù)零點的判定定理可得函數(shù)零點所在區(qū)間【詳解】令函數(shù),則方程的根即為函數(shù)的零點,再由,且,可得函數(shù)在上有零點故選C【點睛】本題主要考查函數(shù)的零點的判定定理的應用,屬于基礎題10、A【解析】設直線的傾斜角為,則由直線的斜率,則故故選二、填空題:本大題共6小題,每小題5分,共30分。11、0【解析】由題意可知,函數(shù)經(jīng)過坐標原點,只需將原點坐標帶入函數(shù)解析式,即可完成求解.【詳解】因為的圖象過原點,所以,即故答案為:0.12、6【解析】如下圖所示,O'B'=2,OM=213、2【解析】先計算,再計算即得解.【詳解】解:,所以.故答案為:214、26【解析】根據(jù)百分位數(shù)的定義即可得到結(jié)果.【詳解】解:,該組數(shù)據(jù)的第分位數(shù)為從小到大排序后第2與3個數(shù)據(jù)的平均數(shù),第2與3個數(shù)據(jù)分別是25、27,故該組數(shù)據(jù)的第分位數(shù)為,故答案為:2615、(答案不唯一)【解析】利用函數(shù)的單調(diào)性及奇偶性即得.【詳解】∵函數(shù)在上單調(diào)遞增且圖象關于y軸對稱,∴函數(shù)可為.故答案為:.16、【解析】由,且,得到是第二象限角,由此能化簡【詳解】解:∵,且,∴是第二象限角,∴故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(i)不存在“和諧區(qū)間”,理由見解析(ii)存在,有唯一的“和諧區(qū)間”【解析】(1)利用來證得結(jié)論成立.(2)(i)通過證明方程只有一個實根來判斷出此時不存在“和諧區(qū)間”.(ii)對的取值進行分類討論,結(jié)合的單調(diào)性以及(1)的結(jié)論求得唯一的“和諧區(qū)間”.【小問1詳解】由已知當時,,得,所以當時,.【小問2詳解】(i)時,假設存在,則由知,注意到,故,所以在單調(diào)遞增,于是,即是方程的兩個不等實根,易知不是方程的根,由已知,當時,,令,則有時,,即,故方程只有一個實根0,故不存在“和諧區(qū)間”.(ii)時,假設存在,則由知若,則由,知,與值域是矛盾,故不存在“和諧區(qū)間”,同理,時,也不存在,下面討論,若,則,故最小值為,于是,所以,所以最大值為2,故,此時的定義域為,值域為,符合題意.若,當時,同理可得,舍去,當時,在上單調(diào)遞減,所以,于是,若即,則,故,與矛盾;若,同理,矛盾,所以,即,由(1)知當時,,因為,所以,從而,,從而,矛盾,綜上所述,有唯一的“和諧區(qū)間”.【點睛】對于“新定義”的題目,關鍵是要運用新定義的知識以及原有的數(shù)學知識來進行求解.本題有兩個“新定義”,一個是泰勒發(fā)現(xiàn)的公式,另一個是“和諧區(qū)間”.泰勒發(fā)現(xiàn)的公式可以直接用于證明,“和諧區(qū)間”可轉(zhuǎn)化為函數(shù)的單調(diào)性來求解.18、(1),;(2)證明見解析【解析】(1)根據(jù)已知條件,為奇函數(shù),利用可以求解出參數(shù)b,然后帶入到即可求解出參數(shù)a,得到函數(shù)解析式后再去驗證函數(shù)是否滿足在上的奇函數(shù)即可;(2)由第(1)問求解出的函數(shù)解析式,任取,,做差,通過因式分解判斷差值的符號,即可證得結(jié)論.【小問1詳解】由已知條件,函數(shù)是定義在上的奇函數(shù),所以,,所以,所以,檢驗,為奇函數(shù),滿足題意條件;所以,.小問2詳解】在上單調(diào)遞增,證明如下:任取,,;其中,,所以,故在上單調(diào)遞增.19、(Ⅰ);(Ⅱ)萬元.【解析】(Ⅰ)利用題中所給數(shù)據(jù)和最小二乘法求出相關系數(shù),進而求出線性回歸方程;(Ⅱ)利用線性回歸方程進行預測.試題解析:(Ⅰ)由題意知所以線性回歸方程為(Ⅱ)令得由此可預測該農(nóng)戶的年收入最低為萬元.20、(1)(2)【解析】(1)由解方程可得解;(2)令,解方程可得解.【小問1詳解】由題意可知,,其中,所以,解得小問2詳解】設剛泡好的茶水大約需要放置分鐘才能達到最佳飲用口感,由題意可知,,令,所以,,,所以,所以剛泡好的茶水大約需要放置分鐘才能達到最佳飲用口感.21、(1)為奇函數(shù),證明見解析.(2).(3).【解析】(1)根據(jù)函數(shù)的奇偶性的定義可得證;(2)由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 禁毒志愿者培訓課件
- 職業(yè)健康與心理健康的融合服務模式
- 遂寧2025年四川遂寧射洪市招聘教育部直屬公費師范生2人筆試歷年參考題庫附帶答案詳解
- 職業(yè)健康與心理健康的協(xié)同管理
- 石家莊河北石家莊市鹿泉區(qū)招聘幼兒園輔助崗位人員48人筆試歷年參考題庫附帶答案詳解
- 湖南2025年湖南省文物考古研究院招聘筆試歷年參考題庫附帶答案詳解
- 景德鎮(zhèn)2025年江西省景德鎮(zhèn)市浮梁縣城區(qū)義務教育學校遴選教師61人筆試歷年參考題庫附帶答案詳解
- 廣州廣東廣州市殘疾人聯(lián)合會直屬事業(yè)單位招聘事業(yè)編制人員18人筆試歷年參考題庫附帶答案詳解
- 安順2025年貴州安順職業(yè)技術(shù)學院引進人才筆試歷年參考題庫附帶答案詳解
- 大理云南大理巍山縣五印中心衛(wèi)生院招聘護理人員筆試歷年參考題庫附帶答案詳解
- 營地合作分成協(xié)議書
- GB/T 70.2-2025緊固件內(nèi)六角螺釘?shù)?部分:降低承載能力內(nèi)六角平圓頭螺釘
- 物流管理畢業(yè)論文范文-物流管理畢業(yè)論文【可編輯全文】
- 煙草門店合作合同范本
- 壁球裁判試題及答案
- 2025年配音演員保密合同協(xié)議
- 網(wǎng)絡銷售人員培訓
- 設備租賃績效考核與激勵方案設計實施方法規(guī)定
- 屠宰場現(xiàn)場施工方案
- 攝影攝像直播合同范本
- 2026屆天津市南開區(qū)九年級物理第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析
評論
0/150
提交評論