2026屆江蘇省重點(diǎn)中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2026屆江蘇省重點(diǎn)中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2026屆江蘇省重點(diǎn)中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2026屆江蘇省重點(diǎn)中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2026屆江蘇省重點(diǎn)中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆江蘇省重點(diǎn)中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線是雙曲線的一條漸近線,,分別是雙曲線左、右焦點(diǎn),P是雙曲線上一點(diǎn),且,則()A.2 B.6C.8 D.102.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.3.雙曲線與橢圓的焦點(diǎn)相同,則等于()A.1 B.C.1或 D.24.已知焦點(diǎn)在軸上的雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C.2 D.5.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設(shè),,則當(dāng)時,n的最大值是()A.8 B.9C.10 D.116.設(shè),是雙曲線()的左、右焦點(diǎn),是坐標(biāo)原點(diǎn).過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.7.在數(shù)列中,已知,則“”是“是單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知雙曲線的漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.49.甲乙兩名運(yùn)動員在某項體能測試中的6次成績統(tǒng)計如表:甲9816151514乙7813151722分別表示甲乙兩名運(yùn)動員這項測試成績的平均數(shù),分別表示甲乙兩名運(yùn)動員這項測試成績的標(biāo)準(zhǔn)差,則有()A., B.,C., D.,10.如圖,在正方體中,()A. B.C. D.11.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.12.直線在y軸上的截距為()A.-1 B.1C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系中,經(jīng)過且法向量的平面方程為,經(jīng)過且方向向量的直線方程為閱讀上面材料,并解決下列問題:給出平面的方程,經(jīng)過點(diǎn)的直線的方程為,則直線l與平面所成角的余弦值為___________.14.已知數(shù)列{}的通項公式為,前n項和為,當(dāng)取得最小值時,n的值為___________.15.如圖,在五面體中,//,,,四邊形為平行四邊形,平面,,則直線到平面距離為_________16.斐波那契數(shù)列,又稱“兔子數(shù)列”,由數(shù)學(xué)家斐波那契研究兔子繁殖問題時引入.已知斐波那契數(shù)列滿足,,,若記,,則________.(用,表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是公差為2的等差數(shù)列,它的前n項和為Sn,且成等比數(shù)列.(1)求的通項公式;(2)求數(shù)列的前n項和.18.(12分)已知空間中三點(diǎn),,,設(shè),(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實數(shù)的值19.(12分)如圖,在三棱錐中,,點(diǎn)為線段上的點(diǎn).(1)若平面,試確定點(diǎn)的位置,并說明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.20.(12分)已知,,且,求實數(shù)的取值范圍.21.(12分)已知拋物線的準(zhǔn)線與軸的交點(diǎn)為.(1)求的方程;(2)若過點(diǎn)的直線與拋物線交于,兩點(diǎn).請判斷是否為定值,若是,求出該定值;若不是,請說明理由.22.(10分)如圖,多面體中,平面平面,,四邊形為平行四邊形.(1)證明:;(2)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)漸近線可求出a,再由雙曲線定義可求解.【詳解】因為直線是雙曲線的一條漸近線,所以,,又或,或(舍去),故選:C2、A【解析】由題意可知,對任意的恒成立,可得出對任意的恒成立,利用基本不等式可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,所以,對任意的恒成立,由基本不等式可得,當(dāng)且僅當(dāng)時,等號成立,所以,.故選:A.3、A【解析】根據(jù)雙曲線方程形式確定焦點(diǎn)位置,再根據(jù)半焦距關(guān)系列式求參數(shù).【詳解】因為雙曲線的焦點(diǎn)在軸上,所以橢圓焦點(diǎn)在軸上,依題意得解得.故選:A4、D【解析】由題意,化簡即可得出雙曲線的離心率【詳解】解:由題意,.故選:D5、B【解析】先求出數(shù)列和的通項公式,然后利用分組求和求出,再對進(jìn)行賦值即可求解.【詳解】解:因為數(shù)列是以1為首項,2為公差的等差數(shù)列所以因為是以1為首項,2為公比的等比數(shù)列所以由得:當(dāng)時,即當(dāng)時,當(dāng)時,所以n的最大值是.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題的關(guān)鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.6、B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點(diǎn)睛:本題主要考查雙曲線的相關(guān)知識,考查了雙曲線的離心率和余弦定理的應(yīng)用,屬于中檔題7、C【解析】分別求出當(dāng)、“是單調(diào)遞增數(shù)列”時實數(shù)的取值范圍,利用集合的包含關(guān)系判斷可得出結(jié)論.【詳解】已知,若,即,解得.若數(shù)列是單調(diào)遞增數(shù)列,對任意的,,即,所以,對任意的恒成立,故,因此,“”是“是單調(diào)遞增數(shù)列”充要條件.故選:C.8、A【解析】由雙曲線的漸近線方程,可得,再由的關(guān)系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.9、B【解析】根據(jù)給定統(tǒng)計表計算、,再比較、大小判斷作答.【詳解】依題意,,,,,所以,.故選:B10、B【解析】根據(jù)正方體的性質(zhì),結(jié)合向量加減法的幾何意義有,即可知所表示的向量.【詳解】∵,而,∴,故選:B11、C【解析】按照程序框圖的流程進(jìn)行計算.【詳解】,故輸出S的值為.故選:C12、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)材料結(jié)合已知條件求得平面的法向量以及直線的方向向量,即可用向量法求得線面角.【詳解】因為平面的方程,不妨令,則,故其過點(diǎn),設(shè)其法向量為,根據(jù)題意則,即,又平面的方程為,則,不妨取,則,則平面的法向量;經(jīng)過點(diǎn)的直線的方程為,不妨取,則,則該直線過點(diǎn),則直線的方向向量.設(shè)直線與平面所成的角為,則.又,故,即直線l與平面所成角的余弦值為.故答案為:.14、7【解析】首先求出數(shù)列的正負(fù)項,再判斷取得最小值時n的值.【詳解】當(dāng),,解得:,當(dāng)和時,,所以取得最小值時,.故答案為:715、【解析】利用等價轉(zhuǎn)化的思想轉(zhuǎn)化為點(diǎn)到面的距離,作,利用線面垂直的判定定理證明平面,然后計算使用等面積法,可得結(jié)果.【詳解】作如圖由//,平面,平面所以//平面所以直線到平面距離等價于點(diǎn)到平面距離又平面,平面所以,又,則平面,,所以平面平面,所以又平面,所以平面所以點(diǎn)到平面距離為由,所以又,所以在中,又故答案為:【點(diǎn)睛】本題考查線面垂直的綜合應(yīng)用以及等面積法求高,重點(diǎn)在于使用等價轉(zhuǎn)換的思想,考驗理解能力,分析問題的能力,屬中檔題.16、【解析】由已知兩式相加求得,得,得到,從而得到,,利用可得答案.【詳解】因為,由,,得,所以,得,因為,所以,,所以,,所以,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)由題意可得,從而可求出,進(jìn)而可求得的通項公式;(2)由(1)可得,然后利用裂項相消求和法可求得結(jié)果【詳解】(1)因為數(shù)列是公差為2的等差數(shù)列,且成等比數(shù)列,所以即,解得,所以;(2)由(1)得,所以.18、(1);(2)或.【解析】(1)坐標(biāo)表示出、,利用向量夾角的坐標(biāo)表示求夾角余弦值;(2)坐標(biāo)表示出k+、k-2,利用向量垂直的坐標(biāo)表示列方程求的值.【詳解】由題設(shè),=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.19、(1)點(diǎn)為MC的中點(diǎn),理由見解析;(2)【解析】(1)由線面垂直得到線線垂直,進(jìn)而由三線合一得到點(diǎn)為MC的中點(diǎn);(2)作出輔助線,找到二面角的平面角,利用勾股定理求出各邊長,用余弦定理求出答案.【小問1詳解】點(diǎn)為MC的中點(diǎn),理由如下:因為平面,平面,所以,,又,由三線合一得:點(diǎn)為MC的中點(diǎn)【小問2詳解】取AB的中點(diǎn)H,連接PH,CH,則由(1)知:,結(jié)合點(diǎn)為MC的中點(diǎn),所以PA=PB,故由三線合一得:PH⊥AB,且CH⊥AB,所以∠CHP即為二面角的平面角,因為,,,所以,,,由勾股定理得:,,,在△PCH中,由余弦定理得:,故二面角的余弦值為20、.【解析】求得集合,根據(jù),分和,兩種情況討論,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】由題意,集合當(dāng)時,即,解得,此時滿足,當(dāng)時,要使得,則或,當(dāng)時,可得,即,此時,滿足;當(dāng)時,可得,即,此時,不滿足,綜上可知,實數(shù)的取值范圍為.21、(1)(2)是定值,定值為【解析】(1)由拋物線的準(zhǔn)線求標(biāo)準(zhǔn)方程;(2)直線與拋物線相交求定值,解聯(lián)立方程消未知數(shù),利用韋達(dá)定理,求線段長,再求它們的倒數(shù)的平方和.【小問1詳解】由題意,可得,即,故拋物線的方程為.【小問2詳解】為定值,且定值是.下面給出證明.證明:設(shè)直線的方程為,,,聯(lián)立拋物線有,消去得,則,又,.得因此為定值,且定值是.22、(1)證明見解析(2)【解析】(1)先通過平面平面得到,再結(jié)合,可得平面,進(jìn)而可得結(jié)論;(2)取的中點(diǎn),的中點(diǎn),連接,,以點(diǎn)為坐標(biāo)原點(diǎn),分別以,,為軸,軸,軸建立空間直角坐標(biāo)系,求出平面的一個法向量以及平面的一個法向量,求這兩個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論