福建省廈冂雙十中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
福建省廈冂雙十中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
福建省廈冂雙十中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
福建省廈冂雙十中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
福建省廈冂雙十中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

福建省廈冂雙十中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機變量服從正態(tài)分布,,則()A. B.C. D.2.已知的周長為,頂點、的坐標(biāo)分別為、,則點的軌跡方程為()A. B.C. D.3.某學(xué)習(xí)小組研究一種衛(wèi)星接收天線(如圖①所示),發(fā)現(xiàn)其曲面與軸截面的交線為拋物線,在軸截面內(nèi)的衛(wèi)星波束呈近似平行狀態(tài)射入形為拋物線的接收天線,經(jīng)反射聚焦到焦點處(如圖②所示).已知接收天線的口徑(直徑)為3.6m,深度為0.6m,則該拋物線的焦點到頂點的距離為()A.1.35m B.2.05mC.2.7m D.5.4m4.函數(shù)在區(qū)間(0,e)上的極小值為()A.-e B.1-eC.-1 D.15.在四面體中,,,,且,,則等于()A. B.C. D.6.若、、為空間三個單位向量,,且與、所成的角均為,則()A.5 B.C. D.7.19世紀(jì)法國著名數(shù)學(xué)家加斯帕爾·蒙日,創(chuàng)立了畫法幾何學(xué),推動了空間幾何學(xué)的獨立發(fā)展,提出了著名的蒙日圓定理:橢圓的兩條切線互相垂直,則切線的交點位于一個與橢圓同心的圓上,稱為蒙日圓,且該圓的半徑等于橢圓長半軸長與短半軸長的平方和的算術(shù)平方根.若圓與橢圓的蒙日圓有且僅有一個公共點,則b的值為()A. B.C. D.8.已知拋物線上一點M與焦點間的距離是3,則點M的縱坐標(biāo)為()A.1 B.2C.3 D.49.空間直角坐標(biāo)系中、、)、,其中,,,,已知平面平面,則平面與平面間的距離為()A. B.C. D.10.等比數(shù)列,,,成公差不為0的等差數(shù)列,,則數(shù)列的前10項和()A. B.C. D.11.已知為等差數(shù)列,為公差,若成等比數(shù)列,且,則數(shù)列的前項和為()A. B.C. D.12.在平面上有及內(nèi)一點O滿足關(guān)系式:即稱為經(jīng)典的“奔馳定理”,若的三邊為a,b,c,現(xiàn)有則O為的()A.外心 B.內(nèi)心C.重心 D.垂心二、填空題:本題共4小題,每小題5分,共20分。13.命題“”的否定為_____________.14.?dāng)?shù)學(xué)家華羅庚說:“數(shù)缺形時少直觀,形少數(shù)時難入微”,事實上,很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決.例如:與相關(guān)的代數(shù)問題,可以轉(zhuǎn)化為點與點之間的距離的幾何問題.結(jié)合上述觀點:對于函數(shù),的最小值為______15.日常生活中的飲用水通常是經(jīng)過凈化的.隨著水的純凈度的提高,所需凈化費用不斷増加.已知將噸水凈化到純凈度為時所需費用(單位:元)為.則凈化到純凈度為時所需費用的瞬時變化率是凈化到純凈度為時所需費用的瞬時變化率的___________倍,這說明,水的純凈度越高,凈化費用增加的速度越___________(填“快”或“慢”).16.函數(shù)單調(diào)增區(qū)間為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面為矩形,,,為的中點,.請用空間向量知識解答下列問題:(1)求線段的長;(2)若為線段上一點,且,求平面與平面夾角的余弦值.18.(12分)正四棱柱的底面邊長為2,側(cè)棱長為4.E為棱上的動點,F(xiàn)為棱的中點.(1)證明:;(2)若E為棱上的中點,求直線BE到平面的距離.19.(12分)已知橢圓左右焦點分別為,,離心率為,P是橢圓上一點,且面積的最大值為1.(1)求橢圓的方程;(2)過的直線交橢圓于M,N兩點,求的取值范圍.20.(12分)已知A,B兩地相距200km,某船從A地逆水到B地,水速為8km/h,船在靜水中的速度為vkm/h(v>8).若船每小時的燃料費與其在靜水中速度的平方成正比,比例系數(shù)為k,當(dāng)v=12km/h,每小時的燃料費為720元(1)求比例系數(shù)k(2)當(dāng)時,為了使全程燃料費最省,船的實際前進速度應(yīng)為多少?(3)當(dāng)(x為大于8的常數(shù))時,為了使全程燃料費最省,船的實際前進速度應(yīng)為多少?21.(12分)已知:,有,:方程表示經(jīng)過第二、三象限的拋物線,.(1)若是真命題,求實數(shù)的取值范圍;(2)若“”是假命題,“”是真命題,求實數(shù)的取值范圍.22.(10分)已知△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,且.(1)求角C的大小;(2)若,求△ABC面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】直接利用正態(tài)分布的應(yīng)用和密度曲線的對稱性的應(yīng)用求出結(jié)果【詳解】根據(jù)隨機變量服從正態(tài)分布,所以密度曲線關(guān)于直線對稱,由于,所以,所以,則,所以故選:B.【點睛】本題考查的知識要點:正態(tài)分布的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題2、D【解析】分析可知點的軌跡是除去長軸端點的橢圓,求出、的值,結(jié)合橢圓焦點的位置可得出頂點的軌跡方程.【詳解】由已知可得,,且、、三點不共線,故點的軌跡是以、為焦點,且除去長軸端點的橢圓,由已知可得,得,,則,因此,點的軌跡方程為.故選:D.3、A【解析】根據(jù)題意先建立恰當(dāng)?shù)淖鴺?biāo)系,可設(shè)出拋物線方程,利用已知條件得出點在拋物線上,代入方程求得p值,進而求得焦點到頂點的距離.【詳解】如圖所示,在接收天線的軸截面所在平面上建立平面直角坐標(biāo)系xOy,使接收天線的頂點(即拋物線的頂點)與原點O重合,焦點F在x軸上設(shè)拋物線的標(biāo)準(zhǔn)方程為,由已知條件可得,點在拋物線上,所以,解得,因此,該拋物線的焦點到頂點的距離為1.35m,故選:A.4、D【解析】求導(dǎo)判斷函數(shù)的單調(diào)性即可求解【詳解】的定義域為(0,+∞),,令,得x=1,當(dāng)x∈(0,1)時,,單調(diào)遞減,當(dāng)x∈(1,e)時,,單調(diào)遞增,故在x=1處取得極小值.故選:D.5、B【解析】根據(jù)空間向量的線性運算即可求解.【詳解】解:由題知,故選:B.6、C【解析】先求的平方后再求解即可.【詳解】,故,故選:C7、B【解析】由題意求出蒙日圓方程,再由兩圓只有一個交點可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日圓的半徑,所以蒙日圓方程為,因為圓與橢圓的蒙日圓有且僅有一個公共點,所以兩圓相切,所以,解得,故選:B8、B【解析】利用拋物線的定義求解即可【詳解】拋物線的焦點為,準(zhǔn)線方程為,因為拋物線上一點M與焦點間的距離是3,所以,得,即點M的縱坐標(biāo)為2,故選:B9、A【解析】由已知得,,,設(shè)向量與向量、都垂直,由向量垂直的坐標(biāo)運算可求得,再由平面平行和距離公式計算可得選項.【詳解】解:由已知得,,,設(shè)向量與向量、都垂直,則,即,取,,又平面平面,則平面與平面間的距離為,故選:A.10、C【解析】先設(shè)等比數(shù)列的公比為,結(jié)合條件可知,由等差中項可知,利用等比數(shù)列的通項公式進行化簡求出,最后利用分組求和法,以及等比數(shù)列、等差數(shù)列的求和公式,即可求出數(shù)列的前10項和.【詳解】設(shè)等比數(shù)列的公比為,,,成公差不為0的等差數(shù)列,則,,都不相等,,且,,,,即,解得:或(舍去),,所以數(shù)列的前10項和:.故選:C.11、C【解析】先利用已知條件得到,解出公差,得到通項公式,再代入數(shù)列,利用裂項相消法求和即可.【詳解】因為成等比數(shù)列,,故,即,故,解得或(舍去),故,即,故的前項和為:.故選:C.【點睛】方法點睛:數(shù)列求和的方法:(1)倒序相加法:如果一個數(shù)列的前項中首末兩端等距離的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前項和即可以用倒序相加法(2)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)項之積構(gòu)成的,那么這個數(shù)列的前項和即可以用錯位相減法來求;(3)裂項相消法:把數(shù)列的通項拆成兩項之差,在求和時,中間的一些像可相互抵消,從而求得其和;(4)分組轉(zhuǎn)化法:一個數(shù)列的通項公式是由若干個等差數(shù)列或等比數(shù)列:或可求和的數(shù)列組成,則求和時可用分組轉(zhuǎn)換法分別求和再相加減;(5)并項求和法:一個數(shù)列的前項和可以兩兩結(jié)合求解,則稱之為并項求和,形如類型,可采用兩項合并求解.12、B【解析】利用三角形面積公式,推出點O到三邊距離相等?!驹斀狻坑淈cO到AB、BC、CA的距離分別為,,,,因為,則,即,又因為,所以,所以點P是△ABC的內(nèi)心.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)特稱命題的否定是全稱命題,可得結(jié)果.【詳解】由特稱命題否定是全稱命題,故條件不變,否定結(jié)論所以“”的否定為“”故答案為:【點睛】本題主要考查特稱命題的否定是全稱命題,屬基礎(chǔ)題.14、【解析】根據(jù)題意得,表示點與點與距離之和的最小值,再找對稱點求解即可.【詳解】函數(shù),表示點與點與距離之和的最小值,則點在軸上,點關(guān)于軸的對稱點,所以,所以的最小值為:.故答案為:.15、①.②.快【解析】根據(jù)導(dǎo)數(shù)的概念可知凈化所需費用的瞬時變化率即為函數(shù)的一階導(dǎo)數(shù),即先對函數(shù)求導(dǎo),然后將和代入進行計算,再求,即可得到結(jié)果,進而能夠判斷水的純凈度越高,凈化費用增加的速度的快慢【詳解】由題意,可知凈化所需費用的瞬時變化率為,所以,,所以,所以凈化到純凈度為時所需費用的瞬時變化率是凈化到純凈度為時所需費用的瞬時變化率的倍;因為,可知水的純凈度越高,凈化費用增加的速度越快.故答案為:,快.16、【解析】利用導(dǎo)數(shù)法求解.【詳解】因為函數(shù),所以,當(dāng)時,,所以的單調(diào)增區(qū)間是,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),由已知可得出,求出的值,即可得解;(2)利用空間向量法可求得平面與平面夾角的余弦值.【小問1詳解】解:平面,,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立如圖所示的空間直角坐標(biāo)系,設(shè),則、、、,則,,,則,解得,故.【小問2詳解】解:,則,又、、,所以,,,設(shè)為平面的法向量,則,取,可得,顯然,為平面的一個法向量,,因此,平面與平面夾角的余弦值為.18、(1)證明見解析;(2).【解析】(1)根據(jù)給定條件建立空間直角坐標(biāo)系,利用空間位置關(guān)系的向量證明計算作答.(2)利用(1)中坐標(biāo)系,證明平面,再求點B到平面的距離即可作答.【小問1詳解】在正四棱柱中,以點D為原點,射線分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,如圖,則,因E為棱上的動點,則設(shè),,而,,即,所以.【小問2詳解】由(1)知,點,,,,設(shè)平面的一個法向量,則,令,得,顯然有,則,而平面,因此,平面,于是有直線BE到平面的距離等于點B到平面的距離,所以直線BE到平面的距離是.19、(1)(2)【解析】(1)依題意得到方程組,求出、、,即可求出橢圓方程;(2)首先求出過且與軸垂直時、的坐標(biāo),即可得到,當(dāng)過的直線不與軸垂直時,可設(shè),,直線方程為,聯(lián)立直線與橢圓方程,消元、列出韋達(dá)定理,根據(jù)平面向量數(shù)量積的坐標(biāo)表示得到,將韋達(dá)定理代入得到,再根據(jù)函數(shù)的性質(zhì)求出取值范圍;【小問1詳解】解:由題意可列方程組,解得,所以橢圓方程為:.【小問2詳解】解:①當(dāng)過的直線與軸垂直時,此時,,,則,.②當(dāng)過的直線不與軸垂直時,可設(shè),,直線方程為聯(lián)立得:.所以,=將韋達(dá)定理代入上式得:.,,,由①②可知.20、(1)5(2)8km/h(3)答案見解析【解析】(1)列出關(guān)系式,根據(jù)當(dāng)v=12km/h,每小時的燃料費為720元即可求解;(2)列出燃料費的函數(shù)解析式,利用導(dǎo)數(shù)求其最值即可;(3)討論x的范圍,結(jié)合(2)的結(jié)論可得答案.【小問1詳解】設(shè)每小時的燃料費為,則當(dāng)v=12km/h,每小時的燃料費為720元,代入得.【小問2詳解】由(1)得.設(shè)全程燃料費為y,則(),所以,令,解得v=0(舍去)或v=16,所以當(dāng)時,;當(dāng)時,,所以當(dāng)v=16時,y取得最小值,故為了使全程燃料費最省,船的實際前進速度應(yīng)為8km/h【小問3詳解】由(2)得,若時,則y在區(qū)間上單調(diào)遞減,當(dāng)v=x時,y取得最小值;若時,則y區(qū)間(8,16)上單調(diào)遞減,在區(qū)間上單調(diào)遞增,當(dāng)v=16時,y取得最小值;綜上,當(dāng)時,船的實際前進速度為8km/h,全程燃料費最?。划?dāng)時,船的實際前進速度應(yīng)為(x-8)km/h,全程燃料費最省21、(1)(2)【解析】(1)將問題轉(zhuǎn)化為不等式對應(yīng)的方程無解,進而根據(jù)根的判別式小于0,計算即可;(2)根據(jù)且、或命題的真假判斷命題p、q的真假,列出對應(yīng)的不等式組,解之即可.【小問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論