版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、專題九 數(shù)列,【考試內(nèi)容】 等差數(shù)列;等比數(shù)列;求數(shù)列的通項;求數(shù)列的前n項和Sn;已知數(shù)列an的前n項和Sn;求通項an 【近6年新課標卷考點統(tǒng)計】,重要考點回顧,一、數(shù)列的概念 1.數(shù)列定義:按一定次序排列的一列數(shù)叫做數(shù)列;數(shù)列中的每個數(shù)都叫這個數(shù)列的項,記作an,在數(shù)列第一個位置的項叫第1項(或首項),在第二個位置的叫第2項,序號為n的項叫第n項(也叫通項)記作an. 2.數(shù)列的一般形式:a1,a2,a3,an,簡記作an. 3.通項公式的定義:如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.,說明: an表示數(shù)列,an表示數(shù)列中的第n項,an=
2、f(n)表示數(shù)列的通項公式; 同一個數(shù)列的通項公式的形式不一定唯一.例如, 不是每個數(shù)列都有通項公式.例如,1,1.4,1.41,1.414, 數(shù)列an的前n項和Sn與通項an的關系:,二、等差數(shù)列 1.等差數(shù)列定義:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示.用遞推公式表示為an-an-1=d(n2)或an+1-an=d(n1). 2.等差數(shù)列的通項公式:an=a1+(n-1)d; 說明:等差數(shù)列的單調(diào)性: d0為遞增數(shù)列, d=0為常數(shù)列, d0為遞減數(shù)列.,3.等差中項的概念:如果a,A
3、,b成等差數(shù)列,那么A叫做a與b的等差中項.其中 . a,A,b成等差數(shù)列 . 4.等差數(shù)列的前n項和公式:,5.等差數(shù)列的性質(zhì): (1)在等差數(shù)列an中,從第2項起,每一項是它相鄰兩項的等差中項; (2)在等差數(shù)列an中,相隔等距離的項組成的數(shù)列是等差數(shù)列, 如:a1,a3,a5,a7,;a3,a8,a13,a18,; (3)在等差數(shù)列an中,對任意m,nN+,an=am+(n-m)d, ; (4)在等差數(shù)列an中,若m,n,p,qN+且m+n=p+q,則am+an=ap+aq;,6.數(shù)列最值 (1)在等差數(shù)列an中,a10,d0時,Sn有最小值; (2)Sn最值的求法: 若已知Sn的表達式
4、形如二次函數(shù),可用二次函數(shù)最值的求法(nN+); 若已知an,則Sn取最值時n的值(nN+)可如下確定 或,三、等比數(shù)列 1.等比數(shù)列定義:一般地,如果一個數(shù)列從第二項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比;公比通常用字母q表示(q0), 即: (注意:“從第二項起”、“常數(shù)”q、等比數(shù)列的公比和項都不為零),2.等比數(shù)列通項公式為:an=a1qn-1(a1q0). 說明:(1)由等比數(shù)列的通項公式可以知道:當公比q=1時該數(shù)列既是等比數(shù)列也是等差數(shù)列; (2)由等比數(shù)列的通項公式知:若an為等比數(shù)列,則 3.等比中項 如果在a與b中間
5、插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(兩個符號相同的非零實數(shù),都有兩個等比中項). 即:a與b的等比中項GG2=abG=,4.等比數(shù)列前n項和公式 一般地,設等比數(shù)列a1,a2,a3,an,的前n項和是Sn=a1+a2+a3+an, 當q1時, 或 當q=1時,Sn=na1. 說明:(1)a1,q,n,Sn和a1,an,q,Sn各已知三個可求第四個; (2)注意求和公式中是qn,通項公式中是qn-1不要混淆; (3)應用求和公式時q1,必要時應討論q=1的情況.,5.等比數(shù)列的性質(zhì) (1)等比數(shù)列任意兩項間的關系:an=amqn-m; (2)對于等比數(shù)列an,若n+
6、m=u+v,則anam=auav.,1.已知數(shù)列an的前n項和Sn=n2-9n,則其通項an= ; 若它的第k項滿足5ak8,則k= .,考點訓練,2.已知an為等差數(shù)列,a1+a3=22,a6=7,則a5= .,3.已知數(shù)列的通項an=-5n+2,則其前n項和Sn= .,4.已知an為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,則a20=( ) A.-1B.1C.3D.7,5.等差數(shù)列an的前n項和為Sn.若S2=4,S4=20,則該數(shù)列的公差 d=( ) A.2B.3C.6D.7,6.等差數(shù)列an的前n項和為Sn,且S3=6,a1=4,則公差d=( ),7.已知等差數(shù)列an
7、是遞增數(shù)列,Sn是an的前n項和,若a2,a4是方程x2-6x+5=0的兩個根,則S6的值為 .,8.等差數(shù)列an中,已知a1= ,a2+a5=4,an=33,則n為( ) A.48B.49C.50D.51,9.等差數(shù)列an的前n項和為Sn,已知 則m=( ) A.38B.20C.10D.9,10.數(shù)列an滿足 ,則a1= .,11.設首項為1,公比為 的等比數(shù)列an的前n項和為Sn,則( ) A.Sn=2an-1B.Sn=3an-2 C.Sn=4-3anD.Sn=3-2an,12.已知an是遞增等比數(shù)列,a2=2,a4-a3=4,則此數(shù)列的公比q= .,13.設等比數(shù)列an的公比q=2,前n
8、項和為Sn,則( ),14.設Sn為等比數(shù)列an的前n項和,8a2-a5=0,則= .,15.公比為2的等比數(shù)列an的各項都是正數(shù),且a3a11=16, 則a5=( ) A.1B.2C.4D.8,16.已知等比數(shù)列an的公比為正數(shù),且, 則a1=( ),17.等差數(shù)列an的公差為2,若a2,a4,a8成等比數(shù)列,則an的前n項Sn=( ),18.已知數(shù)列an為等比數(shù)列,Sn是它的前n項和,若a2a3=2a1,且a4與2a7的等差中項為 ,則S5=( ) A.35B.33C.31D.29,19.等比數(shù)列an的前n項和為Sn,且4a1,2a2,a3成等差數(shù)列.若a1=1,則S4=( ) A.7B.8C.15D.16,20.等比數(shù)列an的公比q0,已知a2=1,an+2+an+1=6an,則an的前4項和S4= .,21.等比數(shù)列an的前n項和為Sn,若S3+3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026青海海西州格爾木市公安局招聘警務輔助人員46人參考題庫含答案
- 2026年甘肅有色冶金職業(yè)技術學院單招綜合素質(zhì)考試模擬測試卷附答案解析
- 北京市海淀區(qū)學府幼兒園招聘參考題庫附答案
- 安徽宿州學院2026年度高層次人才招聘49人參考題庫附答案
- 2026黑龍江哈爾濱啟航勞務派遣有限公司派遣到哈工大計算學部社會計算與交互機器人研究中心招聘1人參考題庫附答案
- 福建省寧德市屏南縣公安局招聘警務輔助人員9人備考題庫必考題
- 特飛所2026屆校園招聘備考題庫及答案1套
- 2026重慶秀山土家族苗族自治縣公益崗招聘2人參考題庫完美版
- 2026重慶飛駛特人力資源管理有限公司外派至華商國際會議中心(華商酒店)招聘1人參考題庫完美版
- 北京市體育局所屬事業(yè)單位招聘100人參考題庫完美版
- 深圳市南山區(qū)雨污分流施工報價表
- 人力資源服務機構(gòu)管理制度
- 北師大版六年級上冊數(shù)學錯題資源
- 聯(lián)合利華中國公司銷售運作手冊
- GB/T 42287-2022高電壓試驗技術電磁和聲學法測量局部放電
- 電子版?zhèn)€人簡歷簡單模板
- 壓覆礦產(chǎn)資源查詢申請表
- GB/T 9115-2010對焊鋼制管法蘭
- GB/T 6495.1-1996光伏器件第1部分:光伏電流-電壓特性的測量
- GB/T 26160-2010中國未成年人頭面部尺寸
- 《凝聚態(tài)物理學新論》配套教學課件
評論
0/150
提交評論