下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、全等三角形及其應(yīng)用【知識(shí)精讀】1. 全等三角形的定義:能夠完全重合的兩個(gè)三角形叫全等三角形;兩個(gè)全等三角形中,互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn)?;ハ嘀睾系倪吔袑?duì)應(yīng)邊,互相重合的角叫對(duì)應(yīng)角。2. 全等三角形的表示方法:若ABC和ABC是全等的三角形,記作 “ABCABC其中,“”讀作“全等于”。記兩個(gè)三角形全等時(shí),通常把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上。3. 全等三角形的的性質(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等;4. 尋找對(duì)應(yīng)元素的方法(1)根據(jù)對(duì)應(yīng)頂點(diǎn)找如果兩個(gè)三角形全等,那么,以對(duì)應(yīng)頂點(diǎn)為頂點(diǎn)的角是對(duì)應(yīng)角;以對(duì)應(yīng)頂點(diǎn)為端點(diǎn)的邊是對(duì)應(yīng)邊。通常情況下,兩個(gè)三角形全等時(shí),對(duì)應(yīng)頂點(diǎn)的字母都寫在對(duì)應(yīng)的位
2、置上,因此,由全等三角形的記法便可寫出對(duì)應(yīng)的元素。(2)根據(jù)已知的對(duì)應(yīng)元素尋找:全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(3)通過觀察,想象圖形的運(yùn)動(dòng)變化狀況,確定對(duì)應(yīng)關(guān)系。通過對(duì)兩個(gè)全等三角形各種不同位置關(guān)系的觀察和分析,可以看出其中一個(gè)是由另一個(gè)經(jīng)過下列各種運(yùn)動(dòng)而形成翻折 :如圖(1),DBOCDEOD,DBOC可以看成是由DEOD沿直線AO翻折180得到的;旋轉(zhuǎn) :如圖(2),DCODDBOA,DCOD可以看成是由DBOA繞著點(diǎn)O旋轉(zhuǎn)180得到的;平移 :如圖(3),DDEFDACB,DDEF可以看成是由DACB沿CB方向平行移動(dòng)而得到的。 5. 判定三角形全等的方
3、法:SAS,SSS,ASA,AAS,HL6. 注意問題:(1)在判定兩個(gè)三角形全等時(shí),至少有一邊對(duì)應(yīng)相等;(2)不能證明兩個(gè)三角形全等的是,a: 三個(gè)角對(duì)應(yīng)相等,即AAA;b :有兩邊和其中一角對(duì)應(yīng)相等,即SSA。【分類解析】(1)證明線段(或角)相等 例1:如圖,已知AD=AE,AB=AC.求證:BF=FC(2)證明線段平行例2:已知:如圖,DEAC,BFAC,垂足分別為E、F,DE=BF,AF=CE.求證:ABCD(3)證明線段的倍半關(guān)系,可利用加倍法或折半法將問題轉(zhuǎn)化為證明兩條線段相等例3:如圖,在 ABC中,AB=AC,延長AB到D,使BD=AB,取AB的中點(diǎn)E,連接CD和CE. 求證
4、:CD=2CE (4)證明線段相互垂直例4:已知:如圖,A、D、B三點(diǎn)在同一條直線上,ADC、BDO為等腰三角形,AO、BC的大小關(guān)系和位置關(guān)系分別如何?證明你的結(jié)論?!绢}型點(diǎn)撥】例1如圖,ACBD,EA,EB分別平分CAB,DBA,CD過點(diǎn)E,求證;ABAC+BD例2如圖,在四邊形ABCD中,BCBA,ADCD,BD平分,求證: 【題型展示】例1 如圖,ABC中,C2B,12。求證:ABACCD【實(shí)戰(zhàn)模擬】1. 下列判斷正確的是( )(A)有兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形全等(B)有兩邊對(duì)應(yīng)相等,且有一角為30的兩個(gè)等腰三角形全等(C)有一角和一邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(D)
5、有兩角和一邊對(duì)應(yīng)相等的兩個(gè)三角形全等2. 已知:如圖,CDAB于點(diǎn)D,BEAC于點(diǎn)E,BE、CD交于點(diǎn)O,且AO平分BAC求證:OBOC3. 如圖,已知C為線段AB上的一點(diǎn),DACM和DCBN都是等邊三角形,AN和CM相交于F點(diǎn),BM和CN交于E點(diǎn)。求證:(1)DCEF是等邊三角形。(2)設(shè)AN、BM交于O,求AOM的度數(shù)4. 如圖,已知在ABC中,B=60,ABC的角平分線AD,CE相交于點(diǎn)O,求證:OE=OD5. 如圖,在等腰RtABC中,C90,D是斜邊上AB上任一點(diǎn),AECD于E,BFCD交CD的延長線于F,CHAB于H點(diǎn),交AE于G求證:BDCG6、(1)如圖23(),以的邊、為邊分別向外作正方形和正方形,連結(jié),試判斷與面積之間的關(guān)系,并說明理由。(2)園林小路,曲徑通幽,如圖23()所示,小路由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- (新教材)2026年滬科版七年級(jí)上冊(cè)數(shù)學(xué) 5.4 從圖表中的數(shù)據(jù)獲取信息 課件
- 白內(nèi)障患者的家庭護(hù)理和家庭照顧
- 第九講:基因敲除和藥學(xué)
- 《茄果類蔬菜種苗輕簡化嫁接裝置高效作業(yè)規(guī)范》征求意見稿
- 垂直領(lǐng)域發(fā)展策略
- 基站休眠技術(shù)應(yīng)用
- 基因編輯脫靶效應(yīng)-第6篇
- 2025年自動(dòng)駕駛野生動(dòng)物避讓
- 多層次預(yù)警架構(gòu)設(shè)計(jì)
- 基礎(chǔ)設(shè)施耐久性研究-第1篇
- GB/T 45701-2025校園配餐服務(wù)企業(yè)管理指南
- 2025-2030中國高效節(jié)能電機(jī)行業(yè)競(jìng)爭(zhēng)力優(yōu)勢(shì)與發(fā)展行情監(jiān)測(cè)研究報(bào)告
- 健身房合伙協(xié)議書
- 美甲師聘用合同協(xié)議
- 《儲(chǔ)能電站技術(shù)監(jiān)督導(dǎo)則》2580
- 保安人員安全知識(shí)培訓(xùn)內(nèi)容
- 垃圾池維修合同范例
- DB31∕T 310001-2020 船舶水污染物內(nèi)河接收設(shè)施配置規(guī)范
- 北京市西城區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期語文期末試卷(含答案)
- DB11T 850-2011 建筑墻體用膩?zhàn)討?yīng)用技術(shù)規(guī)程
- 2024年天津市南開區(qū)翔宇學(xué)校四上數(shù)學(xué)期末檢測(cè)模擬試題含解析
評(píng)論
0/150
提交評(píng)論