全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
_Correspondingauthor:AlbanAgazzi,UniversitdeNantes-LaboratoiredethermocintiquedeNantes,LaChantrerie,rueChristianPauc,BP50609,44306Nantescedex3-France,phone:+33240683171,fax:+33240683141email:alban.agazziuniv-nantes.frAMETHODOLOGYFORTHEDESIGNOFEFFECTIVECOOLINGSYSTEMININJECTIONMOULDINGA.Agazzi1*,V.Sobotka1,R.LeGoff2,D.Garcia2,Y.Jarny11UniversitdeNantes,NantesAtlantiqueUniversits,LaboratoiredeThermocintiquedeNantes,UMRCNRS6607,rueChristianPauc,BP50609,F-44306NANTEScedex3,France2PleEuropendePlasturgie,2ruePierreetMarieCurie,F-01100BELLIGNAT,FranceABSTRACT:Inthermoplasticinjectionmoulding,partqualityandcycletimedependstronglyonthecoolingstage.Numerousstrategieshavebeeninvestigatedinordertodeterminethecoolingconditionswhichminimizeundesireddefectssuchaswarpageanddifferentialshrinkage.Inthispaperweproposeamethodologyfortheoptimaldesignofthecoolingsystem.Basedongeometricalanalysis,thecoolinglineisdefinedbyusingconformalcoolingconcept.Itdefinesthelocationsofthecoolingchannels.Weonlyfocusonthedistributionandintensityofthefluidtemperaturealongthecoolinglinewhichisherefixed.Weformulatethedeterminationofthistemperaturedistribution,astheminimizationofanobjectivefunctioncomposedoftwoterms.Itisshownhowthistwoantagonisttermshavetobeweightedtomakethebestcompromise.Theexpectedresultisanimprovementofthepartqualityintermsofshrinkageandwarpage.KEYWORDS:Inverseproblem,heattransfer,injectionmoulding,coolingdesign1INTRODUCTIONInthefieldofplasticindustry,thermoplasticinjectionmouldingiswidelyused.Theprocessiscomposedoffouressentialstages:mouldcavityfilling,meltpacking,solidificationofthepartandejection.Aroundseventypercentofthetotaltimeoftheprocessisdedicatedtothecoolingofthepart.Moreoverthisphaseimpactsdirectlyonthequalityofthepart12.Asaconsequence,thepartmustbecooledasuniformlyaspossiblesothatundesireddefectssuchassinkmarks,warpage,shrinkage,thermalresidualstressesareminimized.Themostinfluentparameterstoachievetheseobjectivesarethecoolingtime,thenumber,thelocationandthesizeofthechannels,thetemperatureofthecoolantfluidandtheheattransfercoefficientbetweenthefluidandtheinnersurfaceofthechannels.Thecoolingsystemdesignwasprimarilybasedontheexperienceofthedesignerbutthedevelopmentofnewrapidprototypingprocessmakespossibletomanufactureverycomplexchannelshapeswhatmakesthisempiricalformermethodinadequate.Sothedesignofthecoolingsystemmustbeformulatedasanoptimizationproblem.1.1HEATTRANSFERANALYSISThestudyofheattransferconductionininjectiontoolsisanonlinearproblemduetothedependenceofparameterstothetemperature.Howeverthermophysicalparametersofthemouldsuchasthermalconductivityandheatcapacityremainconstantintheconsideredtemperaturerange.Inadditiontheeffectofpolymercrystallisationisoftenneglectedandthermalcontactresistancebetweenthemouldandthepartisconsideredmoreoftenasconstant.TheevolutionofthetemperaturefieldisobtainedbysolvingtheFouriersequationwithperiodicboundaryconditions.Thisevolutioncanbesplitintwoparts:acyclicpartandanaveragetransitorypart.Thecyclicpartisoftenignoredbecausethedepthofthermalpenetrationdoesnotaffectsignificantlythetemperaturefield3.Manyauthorsusedanaveragecyclicanalysiswhichsimplifiesthecalculus,butthefluctuationsaroundtheaveragecanbecomprisedbetween15%and40%3.Thecloserofthepartthechannelsare,thehigherthefluctuationsaroundtheaverageare.Henceinthatconfigurationitbecomesveryimportanttomodelthetransientheattransfereveninstationaryperiodicstate.Inthisstudy,theperiodictransientanalysisoftemperaturewillbepreferredtotheaveragecycletimeanalysis.Itshouldbenoticedthatinpracticethedesignofthecoolingsystemisthelaststepforthetooldesign.Neverthelesscoolingbeingofprimaryimportanceforthequalityofthepart,thethermaldesignshouldbeoneofthefirststagesofthedesignofthetools.DOI10.1007/s12289-010-0695-2Springer-VerlagFrance2010IntJMaterForm(2010)Vol.3Suppl1:16131.2OPTIMIZATIONTECHNIQUESINMOULDINGIntheliterature,variousoptimizationprocedureshavebeenusedbutallfocusedonthesameobjectives.Tangetal.4usedanoptimizationprocesstoobtainauniformtemperaturedistributioninthepartwhichgivesthesmallestgradientandtheminimalcoolingtime.Huang5triedtoobtainuniformtemperaturedistributioninthepartandhighproductionefficiencyi.eaminimalcoolingtime.Lin6summarizedtheobjectivesofthemoulddesignerin3facts.Coolthepartthemostuniformly,achieveadesiredmouldtemperaturesothatthenextpartcanbeinjectedandminimizethecycletime.Theoptimalcoolingsystemconfigurationisacompromisebetweenuniformityandcycletime.Indeedthelongerthedistancebetweenthemouldsurfacecavityandthecoolingchannelsis,thehighertheuniformityofthetemperaturedistributionwillbe6.Inversely,theshorterthedistanceis,thefastertheheatisremovedfromthepolymer.Howevernonuniformtemperaturesatthemouldsurfacecanleadtodefectsinthepart.Thecontrolparameterstogettheseobjectivesarethenthelocationandthesizeofthechannels,thecoolantfluidflowrateandthefluidtemperature.Twokindsofmethodologyareemployed.Thefirstoneconsistsinfindingtheoptimallocationofthechannelsinordertominimizeanobjectivefunction47.Thesecondapproachisbasedonaconformalcoolingline.Lin6definesacoolinglinerepresentingtheenvelopofthepartwherethecoolingchannelsarelocated.Optimalconditions(locationonthecoolingandsizeofthechannels)aresearchedonthiscoolingline.Xuetal.8gofurtherandcutthepartincoolingcellsandperformtheoptimizationoneachcoolingcell.1.3COMPUTATIONALALGORITHMSTocomputethesolution,numericalmethodsareneeded.Theheattransferanalysisisperformedeitherbyboundaryelements7orfiniteelementsmethod4.Themainadvantageofthefirstoneisthatthenumberofunknownstobecomputedislowerthanwithfiniteelements.Onlytheboundariesoftheproblemaremeshedhencethetimespenttocomputethesolutionisshorterthanwithfiniteelements.Howeverthismethodonlyprovidesresultsontheboundariesoftheproblem.Inthisstudyafiniteelementmethodispreferredbecausetemperatureshistoryinsidethepartisneededtoformulatetheoptimalproblem.TocomputeoptimalparameterswhichminimizetheobjectivefunctionTangetal.4usethePowellsconjugatedirectionsearchmethod.Matheyetal.7usetheSequentialQuadraticProgrammingwhichisamethodbasedongradients.Itcanbefoundnotonlydeterministicmethodsbutalsoevolutionarymethods.Huangetal.5useageneticalgorithmtoreachthesolution.Thislastkindofalgorithmisverytimeconsumingbecauseittriesalotofrangeofsolution.Inpracticetimespentformoulddesignmustbeminimizedhenceadeterministicmethod(conjugategradient)whichreachesanacceptablelocalsolutionmorerapidlyispreferred.2METHODOLOGY2.1GOALSThemethodologydescribedinthispaperisappliedtooptimizethecoolingsystemdesignofaT-shapedpart(Figure1).ThisshapeisencounteredinmanypaperssocomparisoncaneasilybedoneinparticularlywithTangetal.4.Figure1:HalfT-shapedgeometryBasedonamorphologicalanalysisofthepart,twosurfaces1and3areintroducedrespectivelyastheerosionandthedilation(coolingline)ofthepart(Figure1).Theboundaryconditionoftheheatconductionproblemalongthecoolingline3isathirdkindconditionwithinfinitetemperaturesfixedasfluidtemperatures.Theoptimizationconsistsinfindingthesefluidtemperatures.Usingacoolinglinepreventstochoosethenumberandsizeofcoolingchannelsbeforeoptimizationiscarriedout.Thisrepresentsanimportantadvantageincaseofcomplexpartswherethelocationofchannelsisnotintuitive.Thelocationoftheerosionlineinthepartcorrespondstotheminimumsolidifiedthicknessofpolymerattheendofcoolingstagesothatejectorscanremovethepartfromthemouldwithoutdamages.2.2OBJECTIVEFUNCTIONIncoolingsystemoptimization,thepartqualityshouldbeofprimarilyimportance.Becausetheminimumcoolingtimeoftheprocessisimposedbythethicknessandthematerialpropertiesofthepart,itisimportanttoreachtheoptimalqualityinthegiventime.Thefluidtemperatureimpactsdirectlythetemperatureofthemouldandthepart,andforturbulentfluidflowtheonlycontrolparameteristhecoolingfluidtemperature.Inthefollowing,theparametertobeoptimizedisthefluidtemperatureandthedeterminationoftheoptimaldistributionaroundthepartisformulatedastheminimizationofanobjectivefunctionScomposedoftwotermscomputedattheendofthecoolingperiod(Equation(1).ThegoalofthefirsttermS1istoreachatemperaturelevelalongtheerosionofthepart.ThesecondtermS2usedinmanyworks47aimstohomogenizethetemperaturedistributionatthesurfaceofthepartandthereforetoreducethecomponentsof14thermalgradientbothalongthesurface2andthroughthethicknessofthepart.ThesetwotermsareweightedbyintroducingthevariablerefT.ItmustbenotedthatwhenrefTthecriterionisreducedtothefirstterm.Onthecontrarytheweightofthesecondtermisincreasedwhen0refT.()+=222112.dTTTdTTTTTSrfejecinjejecfluid(1)ejecT:Ejectiontemperature,injT:Injectiontemperature,refT:Referencetemperature,infT:Fluidtemperature,T:Temperaturefieldcomputedwiththeperiodicconditions(),0(,0XtTXTf+=21X,andft,0isthecoolingperiod,=dTT22.1:Averagesurfacetemperatureofthepartattheejectiontimeft.3NUMERICALRESULTSNumericalresultsarecomparedwiththoseofTangetal4whoconsidertheoptimalcoolingoftheT-shapedpartbydeterminingtheoptimallocationof7coolingchannelsandtheoptimalfluidflowrateofthecoolant.Thefirststepwastoreproducetheirresults(leftpartofFigure2)obtainedwiththefollowingconditions(casew=0.75in4):KTfluid303=,fluidflowratescmQ/3643=ineachcoolingchannels,s5.23=ft.Figure2:GeometryTang(left)andcoolingline(right)Case1:Coolinglineversusfinitenumberofchannelsforaconstantfluidtemperature(fluidT).Theaveragedistance(cmd5.1=)betweenthe7channelsandthepartsurfaceinthecoolingsystemdeterminedbyTangisadoptedinoursystemforlocatingthecoolingline3.Moreover,thefluidtemperatureandtheheattransfercoefficientvaluesissuedfromTangareimposedonthedilationofthepart3.InFigure3thetemperatureprofilesalongthepartsurface2arecomparedattheejectiontimeft.Allthetemperatureprofilesalongthesurfaces3,2,1=iiareplottedcounter-clockwiseonlyonthehalfpartfromiAtoiB(Figure1)andattheejectiontime.Weobservethatthemagnitudeofthetemperatureislessuniformwiththecoolinglinethanwiththe7channels(15Kinsteadof5K).Hencetheoptimalcoolingconfigurationcomputedwithafinitenumberofchannelsisbetterthanthiswiththecoolinglineanditwillbethenconsideredasareference.Figure3:Temperatureprofilesalongthepartsurface2Case2:Coolinglinewithavariablefluidtemperature()(sTfluid)andtheweightingfactorrefT.Thefluidtemperatures)(sTfluidarecomputedbyminimizingtheobjectivefunctionofEquation1wherethesecondtermisignored.TheresultsareplottedinFigures4and5.Figure4:TemperatureprofilesalongtheerosionFigure5:TemperatureprofilesalongthepartsurfaceInFigure4thetemperatureprofileontheerosionismuchuniformandclosetotheejectiontemperaturewithourmethod(-511.79.10S=)thanwithTangsmethod(-512.32.10=S).Howeverinbothcasesapeakremainsbetween0.12mand0.14mwhichcorrespondstothetopoftherib(B1inFigure1).Thishotspotisduetothegeometryofthepartandisverydifficulttocool.NeverthelessinFigure5wenoticethattheprofileoftemperatureatthepartsurfaceislessuniformthanin15case1(20Kinsteadof15K).Inconclusion,thefirsttermisnotsufficienttoimprovethehomogeneityatthepartsurfacebutitisadequateforachievingadesiredleveloftemperatureinthepart.Case3:Coolinglinewith()(sTfluid)andtheweightingfactorsKTref10=andKTref100=.Thefluidtemperatures)(sTfluidarenowcomputedbyminimizingtheobjectivefunctionofEquation1withKTref10=andKTref100=.ResultsareplottedinFigures6and7.Figure6:TemperatureprofilesalongthepartsurfaceFigure7:TemperatureprofilesalongtheerosionTheinfluenceofthetermS2isshowninFigure6.Thistermmakesthesurfacetemperatureofthepartuniform.IndeedincaseKTref10=temperatureisquasi-constantalloverthesurface2exceptforthehotspotasexplainedpreviously.HoweverforthisvalueofrefT,thetemperatureontheerosionisnotacceptable,themeantemperaturebeingtoohigh(340Kforadesiredlevelof336K).Thenthesecondtermimprovesthehomogeneityattheinterfacebuthedgesthesolution.Makinguniformthetemperatureattheinterfacemeanwhileextractingthetotalheatfluxneededtoobtainadesiredleveloftemperatureinthepart,becomeantagonisticproblemsifthislevelistoolow.Thebestsolutionwillbeacompromisebetweenqualityandefficiency.Forexample,bysettingKTref100=theleveloftemperature(ejecT)inthepartisreachedwhereasthesolutionbecomeslessuniformthanwiththevalueofKTref10=.NonethelessthissolutionremainsmoreuniformthanthesolutiongivenbyTang.Theoptimalfluidtemperatureprofilealongthedilationofthehalfpartisplotted(Figure8).Figure8:Optimalfluidtemperatureprofile4CONCLUSIONSInthispaper,anoptimizationmethodwasdevelopedtodeterminethetemperaturedistributiononacoolinglinetoobtainauniformtemperaturefieldinthepartwhichlea
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廊坊職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試真題匯編
- 2024年河北大學(xué)工商學(xué)院馬克思主義基本原理概論期末考試筆試真題匯編
- 人工智能智能寫作系統(tǒng)在旅游紀(jì)念品文案創(chuàng)作的可行性研究與發(fā)展報(bào)告
- 校園周邊公共文化活動對學(xué)生學(xué)習(xí)興趣的影響分析教學(xué)研究課題報(bào)告
- 2025年許昌陶瓷職業(yè)學(xué)院馬克思主義基本原理概論期末考試筆試題庫
- 2025年晉城職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試筆試真題匯編
- 2025年江西建設(shè)職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試真題匯編
- 2025年新疆輕工職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試筆試真題匯編
- 2025年江蘇食品藥品職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試真題匯編
- 2024年山西運(yùn)城農(nóng)業(yè)職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試筆試題庫
- 2025年荊楚理工學(xué)院馬克思主義基本原理概論期末考試真題匯編
- 貴港市利恒投資集團(tuán)有限公司關(guān)于公開招聘工作人員備考題庫附答案
- 廣東省部分學(xué)校2025-2026學(xué)年高三上學(xué)期9月質(zhì)量檢測化學(xué)試題
- 【道 法】期末綜合復(fù)習(xí) 課件-2025-2026學(xué)年統(tǒng)編版道德與法治七年級上冊
- 中國心力衰竭診斷和治療指南2024解讀
- 冬季防靜電安全注意事項(xiàng)
- 2025年國家工作人員學(xué)法用法考試題庫(含答案)
- 祠堂修建合同范本
- 400MWh獨(dú)立儲能電站項(xiàng)目竣工驗(yàn)收報(bào)告
- 高處作業(yè)吊籃安裝、拆卸、使用技術(shù)規(guī)程(2025版)
- 奢侈品庫房管理
評論
0/150
提交評論