第25講 偽隨機序列、擴展頻譜通信課件_第1頁
第25講 偽隨機序列、擴展頻譜通信課件_第2頁
第25講 偽隨機序列、擴展頻譜通信課件_第3頁
第25講 偽隨機序列、擴展頻譜通信課件_第4頁
第25講 偽隨機序列、擴展頻譜通信課件_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、通信原理電子教案通信原理電子教案廣東海洋大學信息學院廣東海洋大學信息學院2012年年12月月通信原理通信原理電子教案電子教案 授課班級:通信授課班級:通信1103班、通信班、通信1104班班 授課教師:廣東海洋大學信息學院授課教師:廣東海洋大學信息學院 梁能梁能第第9 9章章 偽隨機序列偽隨機序列9.1 m序列的產生序列的產生 9.2 m序列的性質序列的性質 9.3 m序列的應用序列的應用 9.1 m序列的產生序列的產生 9.1.1 線性反饋移位寄存器線性反饋移位寄存器 圖圖 9-1 線性反饋移位寄存器線性反饋移位寄存器 an11an22a1n1a0c1c2cn1cn1c01n輸出ak 由于帶

2、有反饋,因此在移位脈沖作用下,移位寄存器各由于帶有反饋,因此在移位脈沖作用下,移位寄存器各級的狀態(tài)將不斷變化,通常移位寄存器的最后一級做輸出,級的狀態(tài)將不斷變化,通常移位寄存器的最后一級做輸出,輸出序列為輸出序列為 110nkaaaa 輸出序列是一個周期序列。其特性由移位寄存器的級數、輸出序列是一個周期序列。其特性由移位寄存器的級數、初始狀態(tài)、反饋邏輯以及時鐘速率初始狀態(tài)、反饋邏輯以及時鐘速率(決定著輸出碼元的寬度決定著輸出碼元的寬度)所所決定。當移位寄存器的級數及時鐘一定時,輸出序列就由移決定。當移位寄存器的級數及時鐘一定時,輸出序列就由移位寄存器的初始狀態(tài)及反饋邏輯完全確定。當初始狀態(tài)為全

3、位寄存器的初始狀態(tài)及反饋邏輯完全確定。當初始狀態(tài)為全零狀態(tài)時,移位寄存器輸出全零狀態(tài)時,移位寄存器輸出全 0 序列。為了避免這種情況,序列。為了避免這種情況,需設置全需設置全 0 排除電路。排除電路。 1. 線性反饋移位寄存器的遞推關系式線性反饋移位寄存器的遞推關系式 遞推關系式又稱為反饋邏輯函數或遞推方程。設圖遞推關系式又稱為反饋邏輯函數或遞推方程。設圖10-1 所示的線性反饋移位寄存器的初始狀態(tài)為所示的線性反饋移位寄存器的初始狀態(tài)為(a0 a1 an-2 an-1), 經一次移位線性反饋,移位寄存器左端第一級的輸入為經一次移位線性反饋,移位寄存器左端第一級的輸入為 niininnnnnac

4、acacacaca10112211若經若經k次移位,則第一級的輸入為次移位,則第一級的輸入為 niililaca1其中,其中,l=n+k-1n, k=1,2,3, 2. 線性反饋移位寄存器的特征多項式線性反饋移位寄存器的特征多項式 用多項式用多項式f(x)來描述線性反饋移位寄存器的反饋連接狀態(tài):來描述線性反饋移位寄存器的反饋連接狀態(tài): niiinnxcxcxccxf010)( 若一個若一個n次多項式次多項式f(x)滿足下列條件滿足下列條件(1) f(x)為既約多項式為既約多項式(即不能分解因式的多項式即不能分解因式的多項式);(2) f(x)可整除可整除(xp+1), p=2n-1;(3) f

5、(x)除不盡除不盡(xq+1), qp。則稱則稱f(x)為本原多項式。為本原多項式。 9.1.2 m序列產生器序列產生器 現以現以n=4為例來說明為例來說明m序列產生器的構成。用序列產生器的構成。用 4 級線性反級線性反饋移位寄存器產生的饋移位寄存器產生的m序列,其周期為序列,其周期為p=24-1=15,其特征多,其特征多項式項式f(x)是是 4 次本原多項式,能整除次本原多項式,能整除(x15+1)。先將。先將(x15+1)分解分解因式,使各因式為既約多項式,再尋找因式,使各因式為既約多項式,再尋找f(x)。 ) 1)(1() 1)(1)(1(1234344215xxxxxxxxxxxx圖圖

6、 9-2 m序列產生器序列產生器 a31a22a13a04ak1 0 0 01 1 0 01 1 1 01 1 1 10 1 1 11 0 1 10 1 0 11 0 1 01 1 0 10 1 1 00 0 1 11 0 0 10 1 0 00 0 1 00 0 0 11 0 0 09.2.1 均衡特性(平衡性)均衡特性(平衡性) m序列每一周期中序列每一周期中 1 的個數比的個數比 0 的個數多的個數多 1 個。個。 由于由于p=2n-1 為奇數,因而在每一周期中為奇數,因而在每一周期中 1 的個數為的個數為(p+1)/2=2n-1為為偶數,而偶數,而0 的個數為的個數為(p-1)/2=2

7、n-1-1 為奇數。上例中為奇數。上例中p=15, 1 的的個數為個數為 8,0 的個數為的個數為 7。當。當p足夠大時,在一個周期中足夠大時,在一個周期中 1 與與 0 出現的次數基本相等。出現的次數基本相等。 9.2 m 序列的性質序列的性質9.2.2 游程特性(游程分布的隨機性)游程特性(游程分布的隨機性) 我們把一個序列中取值(我們把一個序列中取值(1 或或 0)相同連在一起的元素合)相同連在一起的元素合稱為一個游程。在一個游程中元素的個數稱為游程長度。例稱為一個游程。在一個游程中元素的個數稱為游程長度。例如圖如圖 9-2 中給出的中給出的m序列序列ak= 0 0 0 1 1 1 1

8、0 1 0 1 1 0 0 1 在其一個周期的在其一個周期的 15 個元素中,共有個元素中,共有 8 個游程,個游程, 其中長其中長度為度為 4 的游程一個,的游程一個, 即即 1 1 1 1; 長度為長度為 3 的游程的游程 1 個,個, 即即 0 0 0; 長度為長度為 2 的游程的游程2個,個, 即即1 1 與與 0 0; 長度為長度為 1 的游程的游程 4 個,個, 即即 2 個個 1 與與 2 個個 0。 m序列的一個周期(序列的一個周期(p=2n-1)中,游程總數為)中,游程總數為2n-1。其中。其中長度為長度為 1 的游程個數占游程總數的的游程個數占游程總數的 1/2;長度為;長

9、度為 2 的游程個的游程個數占游程總數的數占游程總數的1/22=1/4;長度為;長度為 3 的游程個數占游程總數的游程個數占游程總數的的 1/23=1/8; 一般地,長度為一般地,長度為k的游程個數占游程總的游程個數占游程總數的數的 1/2k=2-k,其中,其中 1k(n-2)。而且,在長度為)。而且,在長度為k 游程中,游程中,連連 1游程與連游程與連 0 游程各占一半,長為(游程各占一半,長為(n-1)的游程是連)的游程是連 0 游程,游程, 長為長為 n 的游程是連的游程是連 1 游程。游程。 9.2.3 移位相加特性(線性疊加性)移位相加特性(線性疊加性) m序列和它的位移序列模二相加

10、后所得序列仍是該序列和它的位移序列模二相加后所得序列仍是該m序列序列的某個位移序列。的某個位移序列。 設設mr是周期為是周期為p的的m序列序列mp r次延遲移位后次延遲移位后的序列,的序列, 那么那么 srpmmm其中其中ms為為mp某次延遲移位后的序列。某次延遲移位后的序列。 例如,例如,mp=0 0 0 1 1 1 1 0 1 0 1 1 0 0 1, mp延遲兩位后得延遲兩位后得mr, 再模二相加再模二相加mr=0 1 0 0 0 1 1 1 1 0 1 0 1 1 0, ms=mp +mr=0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 , 可見,可見,ms=mp+mr為為

11、mp延遲延遲 8 位后的序列。位后的序列。 9.2.4 自相關特性自相關特性 m序列具有非常重要的自相關特性。在序列具有非常重要的自相關特性。在m序列中,常常用序列中,常常用+1代表代表 0,用,用-1代表代表 1。 此時定義:設長為此時定義:設長為 p的的m序列,序列, 記作記作 )12(,321nppaaaa經過經過j次移位后,次移位后,m序列為序列為 pjjjjaaaa,321其中其中ai+p=ai(以以 p 為周期為周期),以上兩序列的對應項相乘然后相加,以上兩序列的對應項相乘然后相加, 利用所得的總和利用所得的總和 piijipjpjjjaaaaaaaaaa1332211來衡量一個來

12、衡量一個m序列與它的序列與它的j次移位序列之間的相關程度,并把次移位序列之間的相關程度,并把它叫做它叫做m序列序列(a1,a2,a3,ap)的自相關函數。記作的自相關函數。記作 piijiaajR1)(當采用二進制數字當采用二進制數字 0 和和 1 代表碼元的可能取值時代表碼元的可能取值時 pDADADAjR)(paaaajRjiijii10)(的數目的數目由移位相加特性可知,由移位相加特性可知, 仍是仍是m序列中的元素,序列中的元素, 所以所以式式(10-7)分子就等于分子就等于m序列中一個周期中序列中一個周期中 0 的數目與的數目與 1 的數目的數目之差。之差。 另外由另外由m序列的均衡性

13、可知,序列的均衡性可知, 在一個周期中在一個周期中 0 比比 1 的的個數少一個,個數少一個, 故得故得A-D=-1(j為非零整數時為非零整數時)或或p(j為零時為零時)。 因此因此得得 jiiaapjR11)()1(, 2, 10pjjm序列的自相關函數只有兩種取值序列的自相關函數只有兩種取值(1和和-1/p)。R(j)是一個周期函數,即是一個周期函數,即 )()(kpjRjR式中,式中,k=1,2, p=(2n-1)為周期。為周期。 而且而且R(j)是偶函數,是偶函數, 即即 )()(jRjRj=整數整數 圖圖 9-3 m序列的自相關函數序列的自相關函數 R(j)1123123PP1Pj0

14、9.2.5 偽噪聲特性偽噪聲特性 如果我們對一個正態(tài)分布白噪聲取樣,如果我們對一個正態(tài)分布白噪聲取樣, 若取樣值為正,若取樣值為正, 記記為為+1,取樣值為負,記為,取樣值為負,記為-1,將每次取樣所得極性排成序列,將每次取樣所得極性排成序列, 可以寫成可以寫成+1,-1,+1,+1,+1,-1,-1,+1,-1, 這是一個隨機序列,它具有如下基本性質:這是一個隨機序列,它具有如下基本性質: (1) 序列中序列中+1 和和-1 出現的概率相等;出現的概率相等; (2) 序列中長度為序列中長度為 1 的游程約占的游程約占 1/2, 長度為長度為 2 的游程約占的游程約占 1/4,長度為,長度為

15、3 的游程約占的游程約占 1/8, 一般地,一般地, 長度為長度為k的游程約占的游程約占1/2k,而且,而且+1, -1 游程的數目各占一半;游程的數目各占一半; (3) 由于白噪聲的功率譜為常數,因此其自相關函數為一沖由于白噪聲的功率譜為常數,因此其自相關函數為一沖擊函數擊函數()。 9.3 m序列的應用序列的應用 9.3.1 擴展頻譜通信擴展頻譜通信 圖圖9-4 擴展頻譜通信系統擴展頻譜通信系統 調制帶通解調d(t)信碼n(t)Acosctd(t)信碼載波擴頻函數噪聲解擴函數 擴展頻譜技術的理論基礎是山農公式。對于加性白高斯噪擴展頻譜技術的理論基礎是山農公式。對于加性白高斯噪聲的連續(xù)信道,

16、其信道容量聲的連續(xù)信道,其信道容量C與信道傳輸帶寬與信道傳輸帶寬B及信噪比及信噪比S/N之之間的關系可以用下式表示間的關系可以用下式表示 NSBC1log2這個公式表明,在保持信息傳輸速率不變的條件下,信噪比這個公式表明,在保持信息傳輸速率不變的條件下,信噪比和帶寬之間具有互換關系。就是說,可以用擴展信號的頻譜和帶寬之間具有互換關系。就是說,可以用擴展信號的頻譜作為代價,作為代價, 換取用很低信噪比傳送信號,同樣可以得到很低換取用很低信噪比傳送信號,同樣可以得到很低的差錯率。的差錯率。 擴頻系統有以下特點:擴頻系統有以下特點:(1) 具有選擇地址能力;具有選擇地址能力;(2) 信號的功率譜密度

17、很低,信號的功率譜密度很低, 有利于信號的隱蔽;有利于信號的隱蔽;(3) 有利于加密,有利于加密, 防止竊聽;防止竊聽;(4) 抗干擾性強;抗干擾性強;(5) 抗衰落能力強;抗衰落能力強;(6) 可以進行高分辨率的測距??梢赃M行高分辨率的測距。 擴頻通信系統的工作方式有:直接序列擴頻、跳變頻率擴頻通信系統的工作方式有:直接序列擴頻、跳變頻率擴頻、擴頻、 跳變時間擴頻和混合式擴頻。跳變時間擴頻和混合式擴頻。 1. 直接序列擴頻方式直接序列擴頻方式 圖圖 9-5 直擴系統方框圖和擴頻信號傳輸圖直擴系統方框圖和擴頻信號傳輸圖 偽 碼發(fā)生器模 2加法器調相器本振鐘數據發(fā)射機發(fā)射機解調器中頻相關器調相器

18、載波VCO接收機前站本振鐘VCO偽 碼發(fā)生器數據載波跟蹤誤 差碼跟蹤誤差(a)0110101110010100011001111001010111001011110011000011 0 0 00 0 00 0000 0 0 00 0 000 00 0001(b)(1) 信息碼(2) 偽碼(3) 發(fā)送序列(4) 發(fā)端載波相位(5) 收端載波相位(6) 中頻相位(7) 解調信息000000000000 2. 跳變頻率擴頻方式跳變頻率擴頻方式 偽噪聲發(fā)生器頻 率合成器2信 源1d(u,t)中頻帶通濾 波 器混頻器偽噪聲發(fā)生器5到解調器頻 率合成器431 跳頻指令2 頻移載波f1f2f3f43 參考碼4 參考的頻移載波f1 1Ff2 1Ff3 1Ff4 1F5 送到解調器的相干中頻圖圖 9-6 跳頻系統原理圖跳頻系統原理圖 3. 跳變時間擴頻方式跳變時間擴頻方式 跳變時間擴頻跳變時間擴頻(Time Hopping Spread Spectrum)又稱為跳又稱為跳時,時, 該系統是用偽碼序列來啟閉信號的發(fā)射時刻和持續(xù)時間。該系統是用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論