版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、1-1 Partial Differential Equations (PDE) 1-1-1 Partial Differential Equations and Their Orders Introduction Ordinary differential equation (the ODE for short) is a differential equation that contains one or more derivatives of the dependent variable (in addition to the dependent variable and the ind
2、ependent variable). 含自變量,未知函數(shù)及其導(dǎo)數(shù) 應(yīng)變量 dependent variable 自變量 independent variable The order (階) of an ordinary differential equation is the order of the highest-ordered derivative appearing in the equation. A differential equation that contains, in addition to the dependent variable and the independ
3、ent variables, one or more partial derivatives of the dependent variable is called a partial differential equation, the PDE for short (偏微分方程) The order of the highest-ordered partial derivative appearing in the equation is called the order of the PDE Independent and dependent variables may not appea
4、r in a PDE . A PDE must contain, however, at least one partial derivative of the dependent variable. For an unknown function of two independent variables,1,0,20 xxyxxyxuuuuare the first-order, the second-order andthe third-order PDE, respectively.The k-th order PDE of an unknown function of independ
5、ent variables can be written in a general form 22212221112( ,)0knknnnuuuuuuF u x xxxxxx xxx 2222222( , , , ),ttuauf x y z txyz Three-dimensional wave equation :two-dimensional heat-conduction equation: two-dimensional and the three-dimensional Laplace equations: 22222( , , ),tuauf x y txy ( , )0,( ,
6、 , )0u x yu x y ztwo-dimensional and the three-dimensional Poisson equationsthe dual-phase-lagging heat-conduction equation:雙相滯熱傳導(dǎo)方程( , ),( , , )u x yfu x y zf220(, )tttuuaubuf M tt 1-1-2 Linear, Nonlinear and Quasi-Linear (擬線性) Equations An ODE can be linear, nonlinear A PDE can be linear, nonlinea
7、r , quasi-linear. A PDE is said to be linear if it is linear in the unknown function and all its derivatives; nonlinear equation ; A nonlinear equation is said to be quasi-linear if it is linear in all highest-ordered derivatives of the unknown function. Linear PDE:( , )( , )uua x yf x yxx22uyxx y 2
8、( , )uuu x yxx y Nonlinear PDE:22()()0uuxy2( , )uua x yuxyQuasi-linear PDE:222220uuuuuxxyy 22220uuuuxxy Quasi-linear PDE is nonlinear equation. PDE with constant coefficients PDE with variable coefficients ,11ijinnijx xixi jia ubucufThe general second-order linear PDE in n independent variables has
9、the form: 0,f Homogeneous (齊次的)(齊次的)PDE Else , Nonhomogeneous (非齊次的)(非齊次的)PDE Note that the definition of homogeneity is only for the linear ODE, PDE1-1-3 Solutions of Partial Differential Equations A function is called a classical solution of the PDE, a solution for short, if it has continuous part
10、ial derivatives of all orders appearing in a PDE and satisfies the equation. 此處要注意常微分方程和偏微分方程的解中常數(shù)的含義。 ODE: 常數(shù)是數(shù), PDE: 常數(shù)是任意函數(shù)。2xyux y( , ),uu x y已知:求解:32121:( )( )6Solutionux yxy 此處注意復(fù)合函數(shù)求導(dǎo); 該方程有無數(shù)個(gè)解,求解PDE的特解,不像ODE那樣先求通解,再求特解。而是直接從方程和物理?xiàng)l件出發(fā)求特解。( , ),uu x y已知:求解:0 xyuuxyxy變換::( , )()Solutionu x yf x
11、y1-1-4 Classification of Linear Second-Order Equation2220AxBxyCyDxEyF2BAC elliptic, parabolic, or hyperbolic 0,0,0 1112221220 xxxyyyxya ua ua ubub ucuf2120011002200(,)(,)(,)axyaxy axy elliptic, parabolic, or hyperbolic 0,0,0 0 xxyyyuuelliptic, parabolic, or hyperbolic y Tricomi equation:從另一角度(二次型)看方
12、程的分類:221111212222( )2Aaaa 111221220aaaa11122122aaaa1221aacharacteristic equation: 211221122122121122()0()0aaa aa aaa elliptic, parabolic, or hyperbolic 0,0,0 兩個(gè)特征根同號;有0特征根;異號12112212,aa 3,1( )ijiji jAa0 xxyyzzuuu1231Example 1:2()txxyyua uu21230,a1000100001Example 2:Solution:2( , , , )ttuauf x y z t
13、212341,a 2200000000aaExample 3:Solution:22210000000000000aaa Solution: the second-order linear partial differential equation in independent variables is elliptic, parabolic, or hyperbolic at a point accordingly as 1. all n characteristic roots are with the same sign, 2. there is a vanished character
14、istic root, 3. or n characteristic roots have different signs but (n-1) characteristic roots are with the same sign 0,1( )()nijiji jAap1112221220 xxxyyyxya ua ua ubub ucuf( , )x y( , )x y1-1-5 Canonical Forms(見另一課件)1112221220A uA uA uBuB uCuF222121122121122AA AJaa awith as the coefficients of second
15、-order derivatives 1運(yùn)用復(fù)合函數(shù)求導(dǎo)算一下221111122220 xxyyAaaa 222211122220 xxyyAaaa 2211122220 xxyya za z za z上面兩式有相同的形式:constantz ddd0 xyzzxzy2111222dydy()20dxdxaaadydxxyzz 22111222(dy)2d d(dx)0aax ya1112221220 xxxyyyxya ua ua ubub ucufcharacteristic equation :21212112211ddaaa ayxa21212112211ddaaa ayxachara
16、cteristic roots :21212112211ddaaa ayxa21212112211ddaaa ayxa( , ),( , )x ycx ycd222dd222d2 ,2yyxcyxcxyyxcyxcxyxyx 例如:Hyperbolic type: 21211220aa a1( , , ,)0uu u u st1112221220 xxxyyyxya ua ua ubub ucuf( , )x y( , )x y2( , , ,)0ssttstuus t u u u1112221220A uA uA uBuB uCuF1122(0)AAParabolic type: 21211220aa a1112221220 xxxyyyxya ua ua ubub ucuf( , )x y( , )x y3( , , ,)0uu u u 4( , , ,)0uu u u 222121122121122120AA AJaa aA110A Or:220A只
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甘肅省天水市清水縣多校聯(lián)考2025-2026學(xué)年高一上學(xué)期1月期末考試地理試卷(含答案)
- 2026屆高三生物二輪復(fù)習(xí)課件:選擇題強(qiáng)化練 4.遺傳的基本規(guī)律與伴性遺傳
- 化工企業(yè)冬季培訓(xùn)課件
- 鋼結(jié)構(gòu)綠色制造技術(shù)應(yīng)用
- 飛機(jī)結(jié)構(gòu)專業(yè)知識課件
- 2026安徽合肥工業(yè)大學(xué)管理學(xué)院管理學(xué)院醫(yī)療機(jī)器人與智慧醫(yī)療健康管理團(tuán)隊(duì)科研助理招聘3人備考考試試題及答案解析
- 2026新疆前海集團(tuán)有限責(zé)任公司招聘1人備考考試試題及答案解析
- 2026年上半年黑龍江事業(yè)單位聯(lián)考哈爾濱市招聘592人參考考試題庫及答案解析
- 2026江蘇蘇州人才發(fā)展有限公司招聘2人(一)備考考試題庫及答案解析
- 2026四川通發(fā)廣進(jìn)人力資源管理咨詢有限公司AI數(shù)據(jù)標(biāo)注員(第三批)招聘備考考試題庫及答案解析
- 中學(xué)生冬季防溺水主題安全教育宣傳活動
- 2026年藥廠安全生產(chǎn)知識培訓(xùn)試題(達(dá)標(biāo)題)
- 2026年陜西省森林資源管理局局屬企業(yè)公開招聘工作人員備考題庫及參考答案詳解1套
- 承包團(tuán)建燒烤合同范本
- 口腔種植牙科普
- 2025秋人教版七年級全一冊信息科技期末測試卷(三套)
- 搶工補(bǔ)償協(xié)議書
- 2026年廣東省佛山市高三語文聯(lián)合診斷性考試作文題及3篇范文:可以“重讀”甚至“重構(gòu)”這些過往
- 山東省青島市城陽區(qū)2024-2025學(xué)年九年級上學(xué)期語文期末試卷(含答案)
- 安全生產(chǎn)考試點(diǎn)管理制度(3篇)
- 孕婦尿液捐獻(xiàn)協(xié)議書
評論
0/150
提交評論