版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,)的左、右焦點分別為,以(為坐標原點)為直徑的圓交雙曲線于兩點,若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.2.已知平面向量,,,則實數(shù)x的值等于()A.6 B.1 C. D.3.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.4.函數(shù)圖象的大致形狀是()A. B.C. D.5.我國古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻.這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.6.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準線與軸交于,的面積為,則()A. B. C. D.7.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個大于2的偶數(shù)都可以寫成兩個質(zhì)數(shù)(素數(shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國數(shù)學(xué)家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當好的成績.若將6拆成兩個正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.8.已知,,若,則向量在向量方向的投影為()A. B. C. D.9.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點的坐標為()A. B. C. D.10.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結(jié)果中最接近真實值的是()A. B. C. D.11.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標原點),則k的值為()A. B. C.或- D.和-12.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若滿足,則目標函數(shù)的最大值為______.14.三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).15.在中,點在邊上,且,設(shè),,則________(用,表示)16.已知以x±2y=0為漸近線的雙曲線經(jīng)過點,則該雙曲線的標準方程為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:()的左、右焦點分別為和,右頂點為,且,短軸長為.(1)求橢圓的方程;(2)若過點作垂直軸的直線,點為直線上縱坐標不為零的任意一點,過作的垂線交橢圓于點和,當時,求此時四邊形的面積.18.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標方程;(2)若點坐標為,圓與直線交于兩點,求的值.19.(12分)的內(nèi)角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.20.(12分)在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.(1)求證:平面;(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.21.(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實數(shù)解,求a的取值范圍.22.(10分)已知數(shù)列中,(實數(shù)為常數(shù)),是其前項和,且數(shù)列是等比數(shù)列,恰為與的等比中項.(1)證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項公式;(3)若,當時,的前項和為,求證:對任意,都有.
2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【答案解析】
連接,可得,在中,由余弦定理得,結(jié)合雙曲線的定義,即得解.【題目詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據(jù)雙曲線的定義,得,所以雙曲線的離心率故選:D【答案點睛】本題考查了雙曲線的性質(zhì)及雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.2、A【答案解析】
根據(jù)向量平行的坐標表示即可求解.【題目詳解】,,,,即,故選:A【答案點睛】本題主要考查了向量平行的坐標運算,屬于容易題.3、B【答案解析】
根據(jù)循環(huán)語句,輸入,執(zhí)行循環(huán)語句即可計算出結(jié)果.【題目詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結(jié)果.故選:【答案點睛】本題考查了循環(huán)語句的程序框圖,求輸出的結(jié)果,解答此類題目時結(jié)合循環(huán)的條件進行計算,需要注意跳出循環(huán)的判定語句,本題較為基礎(chǔ).4、B【答案解析】
判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【題目詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當,,可排除D;故選:B.【答案點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.5、D【答案解析】
利用列舉法,從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【題目詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.【答案點睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.6、B【答案解析】
設(shè)點、,并設(shè)直線的方程為,由得,將直線的方程代入韋達定理,求得,結(jié)合的面積求得的值,結(jié)合焦點弦長公式可求得.【題目詳解】設(shè)點、,并設(shè)直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達定理得,,,,,,,,可得,,拋物線的準線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【答案點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關(guān)鍵,考查計算能力,屬于中等題.7、A【答案解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【題目詳解】6拆成兩個正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【答案點睛】本題主要考查了古典概型,基本事件,屬于容易題.8、B【答案解析】
由,,,再由向量在向量方向的投影為化簡運算即可【題目詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【答案點睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題9、C【答案解析】
利用復(fù)數(shù)的運算法則、幾何意義即可得出.【題目詳解】解:復(fù)數(shù)i(2+i)=2i﹣1對應(yīng)的點的坐標為(﹣1,2),故選:C【答案點睛】本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.10、B【答案解析】
為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【題目詳解】如圖所示,為彎管,為6個座位的寬度,則設(shè)弧所在圓的半徑為,則解得可以近似地認為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【答案點睛】本題考查了弧長公式,需熟記公式,考查了學(xué)生的分析問題的能力,屬于基礎(chǔ)題.11、C【答案解析】
直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【題目詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.【答案點睛】本題考查過定點的直線系問題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.12、B【答案解析】
設(shè),則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.二、填空題:本題共4小題,每小題5分,共20分。13、-1【答案解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【題目詳解】由約束條件作出可行域如圖,化目標函數(shù)為,由圖可得,當直線過點時,直線在軸上的截距最大,由得即,則有最大值,故答案為.【答案點睛】本題主要考查線性規(guī)劃中利用可行域求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.14、192【答案解析】
根據(jù)題意,分步進行分析:①,在三對父子中任選1對,安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計數(shù)原理計算可得答案.【題目詳解】根據(jù)題意,分步進行分析:①,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【答案點睛】本題考查排列、組合的應(yīng)用,涉及分步計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.15、【答案解析】
結(jié)合圖形及向量的線性運算將轉(zhuǎn)化為用向量表示,即可得到結(jié)果.【題目詳解】在中,因為,所以,又因為,所以.故答案為:【答案點睛】本題主要考查三角形中向量的線性運算,關(guān)鍵是利用已知向量為基底,將未知向量通過幾何條件向基底轉(zhuǎn)化.16、【答案解析】
設(shè)雙曲線方程為,代入點,計算得到答案.【題目詳解】雙曲線漸近線為,則設(shè)雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【答案點睛】本題考查了根據(jù)漸近線求雙曲線,設(shè)雙曲線方程為是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【答案解析】
(1)依題意可得,解方程組即可求出橢圓的方程;(2)設(shè),則,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,消去,設(shè),,列出韋達定理,即可表示,再根據(jù)求出參數(shù),從而得出,最后由點到直線的距離得到,由即可得解;【題目詳解】解:(1)∵,∴解得,∴橢圓的方程為.(2)∵,∴可設(shè),∴.∵,∴,∴設(shè)直線的方程為,∴,∴,顯然恒成立.設(shè),,則,,∴.∴,∴,∴解得,解得,∴,,∴.∵此時直線的方程為,,∴點到直線的距離為,∴,即此時四邊形的面積為.【答案點睛】本題考查橢圓的標準方程及簡單幾何性質(zhì),直線與橢圓的綜合應(yīng)用,考查計算能力,屬于中檔題.18、(1)(2)【答案解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標方程;(2)把直線l的參數(shù)方程代入圓C的直角坐標方程,由直線參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達定理可得結(jié)果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設(shè)t1,t2是上述方程的兩實數(shù)根,所以t1+t2=3又直線l過點P,A、B兩點對應(yīng)的參數(shù)分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.19、(1)(2)【答案解析】
(1)利用正弦定理的邊化角公式,結(jié)合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡得出,根據(jù)三角形面積公式,即可得出結(jié)論.【題目詳解】(1)由正弦定理得即即在中,,所以(2)因為點是線段的中點,所以兩邊平方得由得整理得,解得或(舍)所以的面積【答案點睛】本題主要考查了正弦定理的邊化角公式,三角形的面積公式,屬于中檔題.20、(1)證明見解析;(2).【答案解析】
(1)由已知可得,結(jié)合,由直線與平面垂直的判定可得平面;(2)由(1)知,,則,,兩兩互相垂直,以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,設(shè),0,,由二面角的余弦值為求解,再由空間向量求解直線與平面所成角的正弦值.【題目詳解】(1)證明:因為四邊形是等腰梯形,,,所以.又,所以,因此,,又,且,,平面,所以平面.(2)取的中點,連接,,由于,因此,又平面,平面,所以.由于,,平面,所以平面,故,所以為二面角的平面角.在等腰三角形中,由于,因此,又,因為,所以,所以以為軸、為軸、為軸建立空間直角坐標系,則,,,,設(shè)平面的法向量為所以,即,令,則,,則平面的法向量,,設(shè)直線與平面所成角為,則【答案點睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題.21、(1)當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【答案解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財稅績效制度
- 象山村民說事制度
- 論按日計罰制度
- 落實企業(yè)(職業(yè))年金制度
- 2026云南中國郵政儲蓄銀行股份有限公司普洱市分行招聘10人參考考試題庫附答案解析
- 桂林銀行考試試題及答案
- 2026廣東清遠市陽山縣城市管理和綜合執(zhí)法局第一次招聘城市管理監(jiān)察協(xié)管員和政府購買服務(wù)人員3人參考考試題庫附答案解析
- 2026上海黃浦區(qū)中意工程創(chuàng)新學(xué)院教務(wù)崗位招聘1人參考考試題庫附答案解析
- 2026四川成都城建投資管理集團有限責(zé)任公司所屬數(shù)智集團招聘3人備考考試試題附答案解析
- 2026上半年黑龍江省體育局事業(yè)單位招聘13人備考考試試題附答案解析
- 如何做好一名護理帶教老師
- 房地產(chǎn)項目回款策略與現(xiàn)金流管理
- 非連續(xù)性文本閱讀(中考試題20篇)-2024年中考語文重難點復(fù)習(xí)攻略(解析版)
- 畜禽糞污資源化利用培訓(xùn)
- 《搶救藥物知識》課件
- 建筑工程咨詢服務(wù)合同(標準版)
- 2024年4月自考05424現(xiàn)代設(shè)計史試題
- 綜合能源管理系統(tǒng)平臺方案設(shè)計及實施合集
- 甲苯磺酸奧馬環(huán)素片-藥品臨床應(yīng)用解讀
- 共享單車對城市交通的影響研究
- 監(jiān)理大綱(暗標)
評論
0/150
提交評論