《任意角的三角函數(shù)》高中人教B版1課件_第1頁
《任意角的三角函數(shù)》高中人教B版1課件_第2頁
《任意角的三角函數(shù)》高中人教B版1課件_第3頁
《任意角的三角函數(shù)》高中人教B版1課件_第4頁
《任意角的三角函數(shù)》高中人教B版1課件_第5頁
已閱讀5頁,還剩95頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4新課標(biāo)人教版課件系列《高中數(shù)學(xué)》11.2.1《任意角的三角函數(shù)》

1.2.1《任意角的三角函數(shù)》2教學(xué)目標(biāo)

1、知識與技能(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);(2)理解任意角的三角函數(shù)不同的定義方法;(3)了解如何利用與單位圓有關(guān)的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;(4)掌握并能初步運(yùn)用公式一;(5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).2、過程與方法初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進(jìn)一步認(rèn)識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).教學(xué)目標(biāo)1、知識與技能33、情態(tài)與價值任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn).過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個確定的實(shí)數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.二、教學(xué)重、難點(diǎn)

重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.3、情態(tài)與價值41.2任意角的三角函數(shù)

1.2.1任意角的三角函數(shù)第一課時1.2任意角的三角函數(shù)第一課時5問題提出1.角的概念是由幾個要素構(gòu)成的,具體怎樣理解?(1)角是由平面內(nèi)一條射線繞其端點(diǎn)從一個位置旋轉(zhuǎn)到另一個位置所組成的圖形.(2)按逆時針方向旋轉(zhuǎn)形成的角為正角,按順時針方向旋轉(zhuǎn)形成的角為負(fù)角,沒有作任何旋轉(zhuǎn)形成的角為零角.(3)角的大小是任意的.問題提出1.角的概念是由幾個要素構(gòu)成的,具體怎樣理解?(162.什么叫做1弧度的角?度與弧度是怎樣換算的?(1)等于半徑長的圓弧所對的圓心角叫做1弧度的角.3.與角α終邊相同的角的一般表達(dá)式是什么?β=α+k·360°(k∈Z)或(2)180°=rad.2.什么叫做1弧度的角?度與弧度是怎樣換算的?(1)等于半徑74.如圖,在直角三角形ABC中,sinα,cosα,tanα分別叫做角α的正弦、余弦和正切,它們的值分別等于什么?ABCα5.當(dāng)角α不是銳角時,我們必須對sinα,cosα,tanα的值進(jìn)行推廣,以適應(yīng)任意角的需要.【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)4.如圖,在直角三角形ABC中,sinα,cosα,tanα8知識探究(一):任意角的三角函數(shù)

思考1:為了研究方便,我們把銳角α放到直角坐標(biāo)系中,并使角α的頂點(diǎn)與原點(diǎn)O重合,始邊與x軸的非負(fù)半軸重合.在角α的終邊上取一點(diǎn)P(a,b),設(shè)點(diǎn)P與原點(diǎn)的距離為r,那么,sinα,cosα,tanα的值分別如何表示?【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)知識探究(一):任意角的三角函數(shù)思考1:為了研究方便,我們9思考2:對于確定的角α,上述三個比值是否隨點(diǎn)P在角α的終邊上的位置的改變而改變呢?為什么?xyoP(a,b)αrAB【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考2:對于確定的角α,上述三個比值是否隨點(diǎn)P在角α的終邊上10思考3:為了使sinα,cosα的表示式更簡單,你認(rèn)為點(diǎn)P的位置選在何處最好?此時,sinα,cosα分別等于什么?xyoP(a,b)α1【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考3:為了使sinα,cosα的表示式更簡單,你認(rèn)為點(diǎn)P的11思考4:在直角坐標(biāo)系中,以原點(diǎn)O為圓心,以單位長度為半徑的圓稱為單位圓.對于角α的終邊上一點(diǎn)P,要使|OP|=1,點(diǎn)P的位置如何確定?α的終邊OxyP【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考4:在直角坐標(biāo)系中,以原點(diǎn)O為圓心,以單位長度為半徑的圓12思考5:設(shè)α是一個任意角,它的終邊與單位圓交于點(diǎn)P(x,y),為了不與當(dāng)α為銳角時的三角函數(shù)值發(fā)生矛盾,你認(rèn)為sinα,cosα,tanα對應(yīng)的值應(yīng)分別如何定義?α的終邊P(x,y)Oxy【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考5:設(shè)α是一個任意角,它的終邊與單位圓交于點(diǎn)P(x,y)13思考6:對于一個任意給定的角α,按照上述定義,對應(yīng)的sinα,cosα,tanα的值是否存在?是否惟一?α的終邊P(x,y)Oxy【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考6:對于一個任意給定的角α,按照上述定義,對應(yīng)的sinα14正、余弦函數(shù)的定義域?yàn)镽,正切函數(shù)的定義域是思考7:對應(yīng)關(guān)系,, 都是以角為自變量,以單位圓上的點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),分別稱為正弦函數(shù)、余弦函數(shù)和正切函數(shù),并統(tǒng)稱為三角函數(shù),在弧度制中,這三個三角函數(shù)的定義域分別是什么?【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)正、余弦函數(shù)的定義域?yàn)镽,思考7:對應(yīng)關(guān)系,15思考8:若點(diǎn)P(x,y)為角α終邊上任意一點(diǎn),那么sinα,cosα,tanα對應(yīng)的函數(shù)值分別等于什么?P(x,y)Oxy【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考8:若點(diǎn)P(x,y)為角α終邊上任意一點(diǎn),那么sinα,16知識探究(二):三角函數(shù)符號與公式

思考1:當(dāng)角α在某個象限時,設(shè)其終邊與單位圓交于點(diǎn)P(x,y),根據(jù)三角函數(shù)定義,sinα,cosα,tanα的函數(shù)值符號是否確定?為什么?α的終邊P(x,y)Oxy【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)知識探究(二):三角函數(shù)符號與公式思考1:當(dāng)角α在某個象限17思考2:設(shè)α是一個任意的象限角,那么當(dāng)α在第一、二、三、四象限時,sinα的取值符號分別如何?cosα,tanα的取值符號分別如何?【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考2:設(shè)α是一個任意的象限角,那么當(dāng)α在第一、二、三、四象18思考3:綜上分析,各三角函數(shù)在各個象限的取值符號如下表:三角函數(shù)第一象限第二象限第三象限第四象限++++----+-+-你有什么辦法記住這些信息?【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考3:綜上分析,各三角函數(shù)在各個象限的取值符號如下表:三19思考4:如果角α與β的終邊相同,那么sinα與sinβ有什么關(guān)系?cosα與cosβ有什么關(guān)系?tanα與tanβ有什么關(guān)系?思考5:上述結(jié)論表明,終邊相同的角的同名三角函數(shù)值相等,如何將這個性質(zhì)用一組數(shù)學(xué)公式表達(dá)?公式一:

()【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考4:如果角α與β的終邊相同,那么sinα與sinβ有什么20思考6:若sinα=sinβ,則角α與β的終邊一定相同嗎?思考7:在求任意角的三角函數(shù)值時,上述公式有何功能作用?可將求任意角的三角函數(shù)值,轉(zhuǎn)化為求0~(或0°~360°)范圍內(nèi)的三角函數(shù)值.思考8:函數(shù)的對應(yīng)形式有一對一和多對一兩種,三角函數(shù)是哪一種對應(yīng)形式?【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考6:若sinα=sinβ,則角α與β的終邊一定相同嗎?21Oxy理論遷移例1求的正弦、余弦和正切值.例2已知角的終邊過點(diǎn)P(-3,-4),求角的正弦、余弦和正切值.OxyP(-3,-4)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)Oxy理論遷移例1求的正弦、余弦和正切值.例2已知角22例3求證:當(dāng)且僅當(dāng)不等式組成立時,角θ為第三象限角.例4確定下列三角函數(shù)值的符號.(1);(2);(3);(4);(5);(6).【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)例3求證:當(dāng)且僅當(dāng)不等式組例4確定下列三角函23小結(jié)作業(yè)1.三角函數(shù)都是以角為自變量,在弧度制中,三角函數(shù)的自變量與函數(shù)值都是在實(shí)數(shù)范圍內(nèi)取值.2.三角函數(shù)的定義是三角函數(shù)的理論基礎(chǔ),三角函數(shù)的定義域、函數(shù)值符號、公式一等,都是在此基礎(chǔ)上推導(dǎo)出來的.【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)小結(jié)作業(yè)1.三角函數(shù)都是以角為自變量,在弧度制中,三角函數(shù)的244.一個任意角的三角函數(shù)只與這個角的終邊位置有關(guān),與點(diǎn)P(x,y)在終邊上的位置無關(guān).公式一揭示了三角函數(shù)值呈周期性變化,即角的終邊繞原點(diǎn)每旋轉(zhuǎn)一周,函數(shù)值重復(fù)出現(xiàn).3.若已知角α的一個三角函數(shù)符號,則角α所在的象限有兩種可能;若已知角α的兩個三角函數(shù)符號,則角α所在的象限就惟一確定.【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)4.一個任意角的三角函數(shù)只與這個角的終邊位置有關(guān),與點(diǎn)P(x25作業(yè):P15練習(xí):1,2,5,7.3,4,6做在書上【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)作業(yè):3,4,6做在書上【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)261.2任意角的三角函數(shù)

1.2.1任意角的三角函數(shù)第二課時【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)1.2任意角的三角函數(shù)第二課時【全國百強(qiáng)?!抠F州省貴27問題提出1.設(shè)α是一個任意角,它的終邊與單位圓交于點(diǎn)P(x,y),角α的三角函數(shù)是怎樣定義的?2.三角函數(shù)在各象限的函數(shù)值符號分別如何?一全正,二正弦,三正切,四余弦.【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)問題提出1.設(shè)α是一個任意角,它的終邊與單位圓交于點(diǎn)P(x,283.公式,, ().其數(shù)學(xué)意義如何?4.角是一個幾何概念,同時角的大小也具有數(shù)量特征.我們從數(shù)的觀點(diǎn)定義了三角函數(shù),如果能從圖形上找出三角函數(shù)的幾何意義,就能實(shí)現(xiàn)數(shù)與形的完美統(tǒng)一.終邊相同的角的同名三角函數(shù)值相等.【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)3.公式,29知識探究(一):正弦線和余弦線

思考1:如圖,設(shè)角α為第一象限角,其終邊與單位圓的交點(diǎn)為P(x,y),則,都是正數(shù),你能分別用一條線段表示角α的正弦值和余弦值嗎?P(x,y)OxyM【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)知識探究(一):正弦線和余弦線思考1:如圖,設(shè)角α為第一象30思考2:若角α為第三象限角,其終邊與單位圓的交點(diǎn)為P(x,y),則,都是負(fù)數(shù),此時角α的正弦值和余弦值分別用哪條線段表示?P(x,y)OxyM【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考2:若角α為第三象限角,其終邊與單位圓的交點(diǎn)為P(x,y31思考3:為了簡化上述表示,我們設(shè)想將線段的兩個端點(diǎn)規(guī)定一個為始點(diǎn),另一個為終點(diǎn),使得線段具有方向性,帶有正負(fù)值符號.根據(jù)實(shí)際需要,應(yīng)如何規(guī)定線段的正方向和負(fù)方向?規(guī)定:線段從始點(diǎn)到終點(diǎn)與坐標(biāo)軸同向時為正方向,反向時為負(fù)方向.【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考3:為了簡化上述表示,我們設(shè)想將線段的兩個端點(diǎn)規(guī)定一個為32思考4:規(guī)定了始點(diǎn)和終點(diǎn),帶有方向的線段,叫做有向線段.由上分析可知,當(dāng)角α為第一、三象限角時,sinα、cosα可分別用有向線段MP、OM表示,即MP=sinα,OM=cosα,那么當(dāng)角α為第二、四象限角時,你能檢驗(yàn)這個表示正確嗎?P(x,y)OxyMP(x,y)OxyM【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考4:規(guī)定了始點(diǎn)和終點(diǎn),帶有方向的線段,叫做有向線段.由上33思考5:設(shè)角α的終邊與單位圓的交點(diǎn)為P,過點(diǎn)P作x軸的垂線,垂足為M,稱有向線段MP,OM分別為角α的正弦線和余弦線.當(dāng)角α的終邊在坐標(biāo)軸上時,角α的正弦線和余弦線的含義如何?POxyMOxyPP【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考5:設(shè)角α的終邊與單位圓的交點(diǎn)為P,過點(diǎn)P作x軸的垂線,34思考6:設(shè)α為銳角,你能根據(jù)正弦線和余弦線說明sinα+cosα>1嗎?POxyMMP+OM>OP=1【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考6:設(shè)α為銳角,你能根據(jù)正弦線和余弦線說明sinα+co35知識探究(二):正切線

AT思考1:如圖,設(shè)角α為第一象限角,其終邊與單位圓的交點(diǎn)為P(x,y),則 是正數(shù),用哪條有向線段表示角α的正切值最合適?POxyM【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)知識探究(二):正切線AT思考1:如圖,設(shè)角α為第一象限角36AT思考2:若角α為第四象限角,其終邊與單位圓的交點(diǎn)為P(x,y),則是負(fù)數(shù),此時用哪條有向線段表示角α的正切值最合適?POxyM【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)AT思考2:若角α為第四象限角,其終邊與單位圓的交點(diǎn)為P(x37ATATPOxyM思考3:若角α為第二象限角,其終邊與單位圓的交點(diǎn)為P(x,y),則是負(fù)數(shù),此時用哪條有向線段表示角α的正切值最合適?【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)ATATPOxyM思考3:若角α為第二象限角,其終邊與單位圓38思考4:若角α為第三象限角,其終邊與單位圓的交點(diǎn)為P(x,y),則是正數(shù),此時用哪條有向線段表示角α的正切值最合適?POxyMATAT【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考4:若角α為第三象限角,其終邊與單位圓的交點(diǎn)為P(x,y39思考5:根據(jù)上述分析,你能描述正切線的幾何特征嗎?過點(diǎn)A(1,0)作單位圓的切線,與角α的終邊或其反向延長線相交于點(diǎn)T,則AT=tanα.ATOxyPATOxyP【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考5:根據(jù)上述分析,你能描述正切線的幾何特征嗎?過點(diǎn)A(140思考6:當(dāng)角α的終邊在坐標(biāo)軸上時,角α的正切線的含義如何?OxyPP當(dāng)角α的終邊在x軸上時,角α的正切線是一個點(diǎn);當(dāng)角α的終邊在y軸上時,角α的正切線不存在.【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考6:當(dāng)角α的終邊在坐標(biāo)軸上時,角α的正切線的含義如何?O41思考7:觀察下列不等式:你有什么一般猜想?【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考7:觀察下列不等式:【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人42思考8:對于不等式(其中α為銳角),你能用數(shù)形結(jié)合思想證明嗎?POxyMAT【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考8:對于不等式POxyMAT【全國百強(qiáng)?!抠F州省貴陽市第43理論遷移例1作出下列各角的正弦線、余弦線、正切線:(1);(2);(3);(4).【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)理論遷移例1作出下列各角的正弦線、余弦線、正切線:44例2在0~內(nèi),求使成立的α的取值范圍.OxyPMP1P2【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)例2在0~內(nèi),求使45例3求函數(shù)的定義域.OxyP2MP1P【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)例3求函數(shù)的定義域.OxyP46小結(jié)作業(yè)1.三角函數(shù)線是三角函數(shù)的一種幾何表示,即用有向線段表示三角函數(shù)值,是今后進(jìn)一步研究三角函數(shù)圖象的有效工具.2.正弦線的始點(diǎn)隨角的終邊位置的變化而變化,余弦線和正切線的始點(diǎn)都是定點(diǎn),分別是原點(diǎn)O和點(diǎn)A(1,0).3.利用三角函數(shù)線處理三角不等式問題,是一種重要的方法和技巧,也是一種數(shù)形結(jié)合的數(shù)學(xué)思想.【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)小結(jié)作業(yè)1.三角函數(shù)線是三角函數(shù)的一種幾何表示,即用有向線段47作業(yè):P17練習(xí):1,2.P21習(xí)題1.2A組:5,7.【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)作業(yè):【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修48再見【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)再見【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四491.邊塞詩的作者大多一些有切身邊塞生活經(jīng)歷和軍旅生活體驗(yàn)的作家,以親歷的見聞來寫作;另一些詩人用樂府舊題來進(jìn)行翻新創(chuàng)作。于是,鄉(xiāng)村便改變成了另一種模樣。正是由于村民們的到來,那些山山嶺嶺、溝溝坪坪便也同時有了名字,成為村民們最樸素的方位標(biāo)識.2.許地山這樣說,也是這樣做的,他長大后埋頭苦干,默默奉獻(xiàn),成為著名的教授和作家,他也因此取了個筆名叫落花生,這就是他筆名的由來。3.在偉大莊嚴(yán)的教堂里,從彩色玻璃窗透進(jìn)一股不很明亮的光線,沉重的琴聲好像是把人的心都洗淘了一番似的,我感到了我自己的渺小。4.夕陽將下,余暉照映湖面,金光璀璨,不可名狀。一是蘇州光福的石壁,也是太湖的一角,更見得靜止處,已不是空闊浩渺的光景。而即小見大,可以使人有更多的推想.5.桃花源里景美人美,沒有紛爭。雖然看似一個似有似無,亦真亦幻的所在,但它是陶淵明心靈釀出的一杯美酒,是他留給后世美好的向往.6.抓住課文中的主要內(nèi)容和重點(diǎn)句子,引導(dǎo)學(xué)生從“搖花樂”中體會到作者對童年生活的和對家鄉(xiāng)的懷念之情。7.桂花是沒有區(qū)別的,問題是母親不是在用嗅覺區(qū)分桂花,而是用情感在體味它們。一親一疏,感覺自然就涇渭分明了。從中,我們不難看出,家鄉(xiāng)在母親心中的分量。8.特點(diǎn)就是這件事物不同于其他的地方,每種物品都有自己明顯的特點(diǎn),比如外形、用途等,所以,如果要想讓自己的物品與眾不同,就一定要抓住它的特點(diǎn)。9.有的時候,我遇到的字只知道拼音,可不知道它的寫法,我就用音序查字法從字典里尋出它的芳蹤,有時候看到不會讀的字,我就用部首查字法在字典中找到它的倩影?!救珖購?qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)1.邊塞詩的作者大多一些有切身邊塞生活經(jīng)歷和軍旅生活體驗(yàn)的作50新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4新課標(biāo)人教版課件系列《高中數(shù)學(xué)》511.2.1《任意角的三角函數(shù)》

1.2.1《任意角的三角函數(shù)》52教學(xué)目標(biāo)

1、知識與技能(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);(2)理解任意角的三角函數(shù)不同的定義方法;(3)了解如何利用與單位圓有關(guān)的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;(4)掌握并能初步運(yùn)用公式一;(5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).2、過程與方法初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進(jìn)一步認(rèn)識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).教學(xué)目標(biāo)1、知識與技能533、情態(tài)與價值任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn).過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個確定的實(shí)數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.二、教學(xué)重、難點(diǎn)

重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.3、情態(tài)與價值541.2任意角的三角函數(shù)

1.2.1任意角的三角函數(shù)第一課時1.2任意角的三角函數(shù)第一課時55問題提出1.角的概念是由幾個要素構(gòu)成的,具體怎樣理解?(1)角是由平面內(nèi)一條射線繞其端點(diǎn)從一個位置旋轉(zhuǎn)到另一個位置所組成的圖形.(2)按逆時針方向旋轉(zhuǎn)形成的角為正角,按順時針方向旋轉(zhuǎn)形成的角為負(fù)角,沒有作任何旋轉(zhuǎn)形成的角為零角.(3)角的大小是任意的.問題提出1.角的概念是由幾個要素構(gòu)成的,具體怎樣理解?(1562.什么叫做1弧度的角?度與弧度是怎樣換算的?(1)等于半徑長的圓弧所對的圓心角叫做1弧度的角.3.與角α終邊相同的角的一般表達(dá)式是什么?β=α+k·360°(k∈Z)或(2)180°=rad.2.什么叫做1弧度的角?度與弧度是怎樣換算的?(1)等于半徑574.如圖,在直角三角形ABC中,sinα,cosα,tanα分別叫做角α的正弦、余弦和正切,它們的值分別等于什么?ABCα5.當(dāng)角α不是銳角時,我們必須對sinα,cosα,tanα的值進(jìn)行推廣,以適應(yīng)任意角的需要.【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)4.如圖,在直角三角形ABC中,sinα,cosα,tanα58知識探究(一):任意角的三角函數(shù)

思考1:為了研究方便,我們把銳角α放到直角坐標(biāo)系中,并使角α的頂點(diǎn)與原點(diǎn)O重合,始邊與x軸的非負(fù)半軸重合.在角α的終邊上取一點(diǎn)P(a,b),設(shè)點(diǎn)P與原點(diǎn)的距離為r,那么,sinα,cosα,tanα的值分別如何表示?【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)知識探究(一):任意角的三角函數(shù)思考1:為了研究方便,我們59思考2:對于確定的角α,上述三個比值是否隨點(diǎn)P在角α的終邊上的位置的改變而改變呢?為什么?xyoP(a,b)αrAB【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考2:對于確定的角α,上述三個比值是否隨點(diǎn)P在角α的終邊上60思考3:為了使sinα,cosα的表示式更簡單,你認(rèn)為點(diǎn)P的位置選在何處最好?此時,sinα,cosα分別等于什么?xyoP(a,b)α1【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考3:為了使sinα,cosα的表示式更簡單,你認(rèn)為點(diǎn)P的61思考4:在直角坐標(biāo)系中,以原點(diǎn)O為圓心,以單位長度為半徑的圓稱為單位圓.對于角α的終邊上一點(diǎn)P,要使|OP|=1,點(diǎn)P的位置如何確定?α的終邊OxyP【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考4:在直角坐標(biāo)系中,以原點(diǎn)O為圓心,以單位長度為半徑的圓62思考5:設(shè)α是一個任意角,它的終邊與單位圓交于點(diǎn)P(x,y),為了不與當(dāng)α為銳角時的三角函數(shù)值發(fā)生矛盾,你認(rèn)為sinα,cosα,tanα對應(yīng)的值應(yīng)分別如何定義?α的終邊P(x,y)Oxy【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考5:設(shè)α是一個任意角,它的終邊與單位圓交于點(diǎn)P(x,y)63思考6:對于一個任意給定的角α,按照上述定義,對應(yīng)的sinα,cosα,tanα的值是否存在?是否惟一?α的終邊P(x,y)Oxy【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考6:對于一個任意給定的角α,按照上述定義,對應(yīng)的sinα64正、余弦函數(shù)的定義域?yàn)镽,正切函數(shù)的定義域是思考7:對應(yīng)關(guān)系,, 都是以角為自變量,以單位圓上的點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),分別稱為正弦函數(shù)、余弦函數(shù)和正切函數(shù),并統(tǒng)稱為三角函數(shù),在弧度制中,這三個三角函數(shù)的定義域分別是什么?【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)正、余弦函數(shù)的定義域?yàn)镽,思考7:對應(yīng)關(guān)系,65思考8:若點(diǎn)P(x,y)為角α終邊上任意一點(diǎn),那么sinα,cosα,tanα對應(yīng)的函數(shù)值分別等于什么?P(x,y)Oxy【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考8:若點(diǎn)P(x,y)為角α終邊上任意一點(diǎn),那么sinα,66知識探究(二):三角函數(shù)符號與公式

思考1:當(dāng)角α在某個象限時,設(shè)其終邊與單位圓交于點(diǎn)P(x,y),根據(jù)三角函數(shù)定義,sinα,cosα,tanα的函數(shù)值符號是否確定?為什么?α的終邊P(x,y)Oxy【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)知識探究(二):三角函數(shù)符號與公式思考1:當(dāng)角α在某個象限67思考2:設(shè)α是一個任意的象限角,那么當(dāng)α在第一、二、三、四象限時,sinα的取值符號分別如何?cosα,tanα的取值符號分別如何?【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考2:設(shè)α是一個任意的象限角,那么當(dāng)α在第一、二、三、四象68思考3:綜上分析,各三角函數(shù)在各個象限的取值符號如下表:三角函數(shù)第一象限第二象限第三象限第四象限++++----+-+-你有什么辦法記住這些信息?【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考3:綜上分析,各三角函數(shù)在各個象限的取值符號如下表:三69思考4:如果角α與β的終邊相同,那么sinα與sinβ有什么關(guān)系?cosα與cosβ有什么關(guān)系?tanα與tanβ有什么關(guān)系?思考5:上述結(jié)論表明,終邊相同的角的同名三角函數(shù)值相等,如何將這個性質(zhì)用一組數(shù)學(xué)公式表達(dá)?公式一:

()【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考4:如果角α與β的終邊相同,那么sinα與sinβ有什么70思考6:若sinα=sinβ,則角α與β的終邊一定相同嗎?思考7:在求任意角的三角函數(shù)值時,上述公式有何功能作用?可將求任意角的三角函數(shù)值,轉(zhuǎn)化為求0~(或0°~360°)范圍內(nèi)的三角函數(shù)值.思考8:函數(shù)的對應(yīng)形式有一對一和多對一兩種,三角函數(shù)是哪一種對應(yīng)形式?【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考6:若sinα=sinβ,則角α與β的終邊一定相同嗎?71Oxy理論遷移例1求的正弦、余弦和正切值.例2已知角的終邊過點(diǎn)P(-3,-4),求角的正弦、余弦和正切值.OxyP(-3,-4)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)Oxy理論遷移例1求的正弦、余弦和正切值.例2已知角72例3求證:當(dāng)且僅當(dāng)不等式組成立時,角θ為第三象限角.例4確定下列三角函數(shù)值的符號.(1);(2);(3);(4);(5);(6).【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)例3求證:當(dāng)且僅當(dāng)不等式組例4確定下列三角函73小結(jié)作業(yè)1.三角函數(shù)都是以角為自變量,在弧度制中,三角函數(shù)的自變量與函數(shù)值都是在實(shí)數(shù)范圍內(nèi)取值.2.三角函數(shù)的定義是三角函數(shù)的理論基礎(chǔ),三角函數(shù)的定義域、函數(shù)值符號、公式一等,都是在此基礎(chǔ)上推導(dǎo)出來的.【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)小結(jié)作業(yè)1.三角函數(shù)都是以角為自變量,在弧度制中,三角函數(shù)的744.一個任意角的三角函數(shù)只與這個角的終邊位置有關(guān),與點(diǎn)P(x,y)在終邊上的位置無關(guān).公式一揭示了三角函數(shù)值呈周期性變化,即角的終邊繞原點(diǎn)每旋轉(zhuǎn)一周,函數(shù)值重復(fù)出現(xiàn).3.若已知角α的一個三角函數(shù)符號,則角α所在的象限有兩種可能;若已知角α的兩個三角函數(shù)符號,則角α所在的象限就惟一確定.【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)4.一個任意角的三角函數(shù)只與這個角的終邊位置有關(guān),與點(diǎn)P(x75作業(yè):P15練習(xí):1,2,5,7.3,4,6做在書上【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)作業(yè):3,4,6做在書上【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)761.2任意角的三角函數(shù)

1.2.1任意角的三角函數(shù)第二課時【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)1.2任意角的三角函數(shù)第二課時【全國百強(qiáng)?!抠F州省貴77問題提出1.設(shè)α是一個任意角,它的終邊與單位圓交于點(diǎn)P(x,y),角α的三角函數(shù)是怎樣定義的?2.三角函數(shù)在各象限的函數(shù)值符號分別如何?一全正,二正弦,三正切,四余弦.【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)問題提出1.設(shè)α是一個任意角,它的終邊與單位圓交于點(diǎn)P(x,783.公式,, ().其數(shù)學(xué)意義如何?4.角是一個幾何概念,同時角的大小也具有數(shù)量特征.我們從數(shù)的觀點(diǎn)定義了三角函數(shù),如果能從圖形上找出三角函數(shù)的幾何意義,就能實(shí)現(xiàn)數(shù)與形的完美統(tǒng)一.終邊相同的角的同名三角函數(shù)值相等.【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)3.公式,79知識探究(一):正弦線和余弦線

思考1:如圖,設(shè)角α為第一象限角,其終邊與單位圓的交點(diǎn)為P(x,y),則,都是正數(shù),你能分別用一條線段表示角α的正弦值和余弦值嗎?P(x,y)OxyM【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)知識探究(一):正弦線和余弦線思考1:如圖,設(shè)角α為第一象80思考2:若角α為第三象限角,其終邊與單位圓的交點(diǎn)為P(x,y),則,都是負(fù)數(shù),此時角α的正弦值和余弦值分別用哪條線段表示?P(x,y)OxyM【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考2:若角α為第三象限角,其終邊與單位圓的交點(diǎn)為P(x,y81思考3:為了簡化上述表示,我們設(shè)想將線段的兩個端點(diǎn)規(guī)定一個為始點(diǎn),另一個為終點(diǎn),使得線段具有方向性,帶有正負(fù)值符號.根據(jù)實(shí)際需要,應(yīng)如何規(guī)定線段的正方向和負(fù)方向?規(guī)定:線段從始點(diǎn)到終點(diǎn)與坐標(biāo)軸同向時為正方向,反向時為負(fù)方向.【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考3:為了簡化上述表示,我們設(shè)想將線段的兩個端點(diǎn)規(guī)定一個為82思考4:規(guī)定了始點(diǎn)和終點(diǎn),帶有方向的線段,叫做有向線段.由上分析可知,當(dāng)角α為第一、三象限角時,sinα、cosα可分別用有向線段MP、OM表示,即MP=sinα,OM=cosα,那么當(dāng)角α為第二、四象限角時,你能檢驗(yàn)這個表示正確嗎?P(x,y)OxyMP(x,y)OxyM【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考4:規(guī)定了始點(diǎn)和終點(diǎn),帶有方向的線段,叫做有向線段.由上83思考5:設(shè)角α的終邊與單位圓的交點(diǎn)為P,過點(diǎn)P作x軸的垂線,垂足為M,稱有向線段MP,OM分別為角α的正弦線和余弦線.當(dāng)角α的終邊在坐標(biāo)軸上時,角α的正弦線和余弦線的含義如何?POxyMOxyPP【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考5:設(shè)角α的終邊與單位圓的交點(diǎn)為P,過點(diǎn)P作x軸的垂線,84思考6:設(shè)α為銳角,你能根據(jù)正弦線和余弦線說明sinα+cosα>1嗎?POxyMMP+OM>OP=1【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考6:設(shè)α為銳角,你能根據(jù)正弦線和余弦線說明sinα+co85知識探究(二):正切線

AT思考1:如圖,設(shè)角α為第一象限角,其終邊與單位圓的交點(diǎn)為P(x,y),則 是正數(shù),用哪條有向線段表示角α的正切值最合適?POxyM【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)知識探究(二):正切線AT思考1:如圖,設(shè)角α為第一象限角86AT思考2:若角α為第四象限角,其終邊與單位圓的交點(diǎn)為P(x,y),則是負(fù)數(shù),此時用哪條有向線段表示角α的正切值最合適?POxyM【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)AT思考2:若角α為第四象限角,其終邊與單位圓的交點(diǎn)為P(x87ATATPOxyM思考3:若角α為第二象限角,其終邊與單位圓的交點(diǎn)為P(x,y),則是負(fù)數(shù),此時用哪條有向線段表示角α的正切值最合適?【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)ATATPOxyM思考3:若角α為第二象限角,其終邊與單位圓88思考4:若角α為第三象限角,其終邊與單位圓的交點(diǎn)為P(x,y),則是正數(shù),此時用哪條有向線段表示角α的正切值最合適?POxyMATAT【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考4:若角α為第三象限角,其終邊與單位圓的交點(diǎn)為P(x,y89思考5:根據(jù)上述分析,你能描述正切線的幾何特征嗎?過點(diǎn)A(1,0)作單位圓的切線,與角α的終邊或其反向延長線相交于點(diǎn)T,則AT=tanα.ATOxyPATOxyP【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)校】貴州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考5:根據(jù)上述分析,你能描述正切線的幾何特征嗎?過點(diǎn)A(190思考6:當(dāng)角α的終邊在坐標(biāo)軸上時,角α的正切線的含義如何?OxyPP當(dāng)角α的終邊在x軸上時,角α的正切線是一個點(diǎn);當(dāng)角α的終邊在y軸上時,角α的正切線不存在.【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)【全國百強(qiáng)?!抠F州省貴陽市第一中學(xué)人教A版高一數(shù)學(xué)必修四課件:1.2任意角的三角函數(shù)思考6:當(dāng)角α的終邊在坐標(biāo)軸上時,角α的正切線的含義如何?O91思考7:觀察下列不等式:你有什么一般猜想?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論