版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為().A. B. C. D.2.斜率為1的直線l與橢圓相交于A、B兩點(diǎn),則的最大值為A.2 B. C. D.3.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.4.下列判斷錯(cuò)誤的是()A.若隨機(jī)變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機(jī)變量服從二項(xiàng)分布:,則D.是的充分不必要條件5.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i6.已知是空間中兩個(gè)不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則7.已知函數(shù),,若對(duì)任意,總存在,使得成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.8.若復(fù)數(shù)()是純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知m,n是兩條不同的直線,,是兩個(gè)不同的平面,給出四個(gè)命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④10.已知四棱錐的底面為矩形,底面,點(diǎn)在線段上,以為直徑的圓過點(diǎn).若,則的面積的最小值為()A.9 B.7 C. D.11.已知集合,則=()A. B. C. D.12.設(shè),是非零向量,若對(duì)于任意的,都有成立,則A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的下頂點(diǎn)為,若直線與橢圓交于不同的兩點(diǎn)、,則當(dāng)_____時(shí),外心的橫坐標(biāo)最大.14.已知實(shí)數(shù),滿足約束條件,則的最大值是__________.15.已知,為雙曲線的左、右焦點(diǎn),雙曲線的漸近線上存在點(diǎn)滿足,則的最大值為________.16.如圖所示,在邊長(zhǎng)為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點(diǎn)的四面體的外接球的體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間.(2)設(shè)直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時(shí)切線的方程.(3)已知分別在,處取得極值,求證:.18.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.19.(12分)已知橢圓的短軸長(zhǎng)為,離心率,其右焦點(diǎn)為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)設(shè)直線與曲線交于,兩點(diǎn),求;(Ⅱ)若點(diǎn)為曲線上任意一點(diǎn),求的取值范圍.21.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大??;(2)若函數(shù)圖象的一條對(duì)稱軸方程為且,求的值.22.(10分)已知在平面四邊形中,的面積為.(1)求的長(zhǎng);(2)已知,為銳角,求.
2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【答案解析】因?yàn)榈恼归_式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為.考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和.2.C【答案解析】
設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進(jìn)而利用弦長(zhǎng)公式求得|AB|的表達(dá)式,利用t的范圍求得|AB|的最大值.【題目詳解】解:設(shè)直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長(zhǎng)|AB|=4.故選:C.【答案點(diǎn)睛】本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達(dá)定理,判別式找到解決問題的突破口.3.B【答案解析】
列出循環(huán)的每一步,進(jìn)而可求得輸出的值.【題目詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時(shí):,,所以:不成立.繼續(xù)進(jìn)行循環(huán),…,當(dāng),時(shí),成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【答案點(diǎn)睛】本題考查的知識(shí)要點(diǎn):程序框圖的循環(huán)結(jié)構(gòu)和條件結(jié)構(gòu)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.4.D【答案解析】
根據(jù)正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識(shí),依次對(duì)四個(gè)選項(xiàng)加以分析判斷,進(jìn)而可求解.【題目詳解】對(duì)于選項(xiàng),若隨機(jī)變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對(duì)稱性,有,故選項(xiàng)正確,不符合題意;對(duì)于選項(xiàng),已知直線平面,直線平面,則當(dāng)時(shí)一定有,充分性成立,而當(dāng)時(shí),不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項(xiàng)正確,不符合題意;對(duì)于選項(xiàng),若隨機(jī)變量服從二項(xiàng)分布:,則,故選項(xiàng)正確,不符合題意;對(duì)于選項(xiàng),,僅當(dāng)時(shí)有,當(dāng)時(shí),不成立,故充分性不成立;若,僅當(dāng)時(shí)有,當(dāng)時(shí),不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項(xiàng)不正確,符合題意.故選:D【答案點(diǎn)睛】本題考查正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識(shí),考查理解辨析能力與運(yùn)算求解能力,屬于基礎(chǔ)題.5.B【答案解析】
復(fù)數(shù)為純虛數(shù),則實(shí)部為0,虛部不為0,求出,即得.【題目詳解】∵為純虛數(shù),∴,解得..故選:.【答案點(diǎn)睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.6.D【答案解析】
利用線面平行和垂直的判定定理和性質(zhì)定理,對(duì)選項(xiàng)做出判斷,舉出反例排除.【題目詳解】解:對(duì)于,當(dāng),且,則與的位置關(guān)系不定,故錯(cuò);對(duì)于,當(dāng)時(shí),不能判定,故錯(cuò);對(duì)于,若,且,則與的位置關(guān)系不定,故錯(cuò);對(duì)于,由可得,又,則故正確.故選:.【答案點(diǎn)睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準(zhǔn)確判斷.7.C【答案解析】
將函數(shù)解析式化簡(jiǎn),并求得,根據(jù)當(dāng)時(shí)可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關(guān)系,即可求得的取值范圍.【題目詳解】依題意,則,當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增,當(dāng)時(shí),;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實(shí)數(shù)的取值范圍為.故選:C.【答案點(diǎn)睛】本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問題的綜合應(yīng)用,屬于中檔題.8.B【答案解析】
化簡(jiǎn)復(fù)數(shù),由它是純虛數(shù),求得,從而確定對(duì)應(yīng)的點(diǎn)的坐標(biāo).【題目詳解】是純虛數(shù),則,,,對(duì)應(yīng)點(diǎn)為,在第二象限.故選:B.【答案點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查復(fù)數(shù)的概念與幾何意義.本題屬于基礎(chǔ)題.9.D【答案解析】
根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【題目詳解】對(duì)于①,若,,,,兩平面相交,但不一定垂直,故①錯(cuò)誤;對(duì)于②,若,,則,故②正確;對(duì)于③,若,,,當(dāng),則與不平行,故③錯(cuò)誤;對(duì)于④,若,,,則,故④正確;故選:D【答案點(diǎn)睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.10.C【答案解析】
根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【題目詳解】設(shè),,則.因?yàn)槠矫?,平面,所?又,,所以平面,則.易知,.在中,,即,化簡(jiǎn)得.在中,,.所以.因?yàn)?,?dāng)且僅當(dāng),時(shí)等號(hào)成立,所以.故選:C.【答案點(diǎn)睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.11.D【答案解析】
先求出集合A,B,再求集合B的補(bǔ)集,然后求【題目詳解】,所以.故選:D【答案點(diǎn)睛】此題考查的是集合的并集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.12.D【答案解析】
畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結(jié)合可得結(jié)果.【題目詳解】由題意,得向量是所有向量中模長(zhǎng)最小的向量,如圖,當(dāng),即時(shí),最小,滿足,對(duì)于任意的,所以本題答案為D.【答案點(diǎn)睛】本題主要考查了空間向量的加減法,以及點(diǎn)到直線的距離最短問題,解題的關(guān)鍵在于用有向線段正確表示向量,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
由已知可得、的坐標(biāo),求得的垂直平分線方程,聯(lián)立已知直線方程與橢圓方程,求得的垂直平分線方程,兩垂直平分線方程聯(lián)立求得外心的橫坐標(biāo),再由導(dǎo)數(shù)求最值.【題目詳解】如圖,由已知條件可知,不妨設(shè),則外心在的垂直平分線上,即在直線,也就是在直線上,聯(lián)立,得或,的中點(diǎn)坐標(biāo)為,則的垂直平分線方程為,把代入上式,得,令,則,由,得(舍)或.當(dāng)時(shí),,當(dāng)時(shí),.當(dāng)時(shí),函數(shù)取極大值,亦為最大值.故答案為:.【答案點(diǎn)睛】本題考查直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了利用導(dǎo)數(shù)求最值,是中等題.14.【答案解析】
令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【題目詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過時(shí),最大,且,故的最大值為.故答案為:.【答案點(diǎn)睛】本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎(chǔ)題.15.【答案解析】
設(shè),由可得,整理得,即點(diǎn)在以為圓心,為半徑的圓上.又點(diǎn)到雙曲線的漸近線的距離為,所以當(dāng)雙曲線的漸近線與圓相切時(shí),取得最大值,此時(shí),解得.16.【答案解析】
將三棱錐置入正方體中,利用正方體體對(duì)角線為三棱錐外接球的直徑即可得到答案.【題目詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對(duì)角線長(zhǎng)為,所以外接球半徑為,其體積為.故答案為:.【答案點(diǎn)睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時(shí),要考慮是否能將其置入正(長(zhǎng))方體中,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(2),;(3)證明見解析.【答案解析】
(1)由的正負(fù)可確定的單調(diào)區(qū)間;(2)利用基本不等式可求得時(shí),取得最小值,由導(dǎo)數(shù)的幾何意義可知,從而求得,求得切點(diǎn)坐標(biāo)后,可得到切線方程;(3)由極值點(diǎn)的定義可知是的兩個(gè)不等正根,由判別式大于零得到的取值范圍,同時(shí)得到韋達(dá)定理的形式;化簡(jiǎn)為,結(jié)合的范圍可證得結(jié)論.【題目詳解】(1)由題意得:的定義域?yàn)椋?dāng)時(shí),,,當(dāng)和時(shí),;當(dāng)時(shí),,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.(2),所以(當(dāng)且僅當(dāng),即時(shí)取等號(hào)),切線的斜率存在最小值,,解得:,,即切點(diǎn)為,從而切線方程,即:.(3),分別在,處取得極值,,是方程,即的兩個(gè)不等正根.則,解得:,且,.,,,即不等式成立.【答案點(diǎn)睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間、導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)證明不等式等知識(shí);本題中證明不等式的關(guān)鍵是能夠通過極值點(diǎn)的定義將問題轉(zhuǎn)變?yōu)橐辉畏匠谈姆植紗栴}.18.(Ⅰ)見解析;(Ⅱ)【答案解析】
(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點(diǎn)M,連接ME,證明;(Ⅱ)由題意可知點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.【題目詳解】(Ⅰ)如圖,連接,交于點(diǎn)M,連接ME,則.因?yàn)槠矫?,平面,所以平面.(Ⅱ)因?yàn)槠矫鍭BC,所以點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離.如圖,設(shè)O是AC的中點(diǎn),連接,OB.因?yàn)闉檎切?,所以,又平面平面,平面平面,所以平面ABC.所以點(diǎn)到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【答案點(diǎn)睛】本題考查證明線面平行,計(jì)算體積,意在考查推理證明,空間想象能力,計(jì)算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關(guān)鍵是證明線線平行,一般構(gòu)造平行四邊形,則對(duì)邊平行,或是構(gòu)造三角形中位線.19.(1);(2).【答案解析】
(1)由已知短軸長(zhǎng)求出,離心率求出關(guān)系,結(jié)合,即可求解;(2)當(dāng)直線的斜率都存在時(shí),不妨設(shè)直線的方程為,直線與橢圓方程聯(lián)立,利用相交弦長(zhǎng)公式求出,斜率為,求出,得到關(guān)于的表達(dá)式,根據(jù)表達(dá)式的特點(diǎn)用“”判別式法求出范圍,當(dāng)有一斜率不存在時(shí),另一條斜率為,根據(jù)弦長(zhǎng)公式,求出,即可求出結(jié)論.【題目詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當(dāng)直線的斜率都存在時(shí),由對(duì)稱性不妨設(shè)直線的方程為,由,,設(shè),則,則,由橢圓對(duì)稱性可設(shè)直線的斜率為,則,.令,則,當(dāng)時(shí),,當(dāng)時(shí),由得,所以,即,且.②當(dāng)直線的斜率其中一條不存在時(shí),根據(jù)對(duì)稱性不妨設(shè)設(shè)直線的方程為,斜率不存在,則,,此時(shí).若設(shè)的方程為,斜率不存在,則,綜上可知的取值范圍是.【答案點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系,注意根與系數(shù)關(guān)系、弦長(zhǎng)公式、函數(shù)最值、橢圓性質(zhì)的合理應(yīng)用,意在考查邏輯推理、計(jì)算求解能力,屬于難題.20.(Ⅰ)6(Ⅱ)【答案解析】
(Ⅰ)化簡(jiǎn)得到直線的普通方程化為,,是以點(diǎn)為圓心,為半徑的圓,利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代化保溫施工機(jī)械應(yīng)用方案
- 鋼結(jié)構(gòu)防震支撐系統(tǒng)設(shè)計(jì)方案
- 施工監(jiān)理工作流程優(yōu)化方案
- 管道施工安全風(fēng)險(xiǎn)評(píng)估方案
- 施工人員心理健康輔導(dǎo)方案
- 工程實(shí)施過程中的變更控制方案
- 2025年黃驊市網(wǎng)格員招聘考試真題
- 銷售管理制度
- 養(yǎng)老院信息化管理與服務(wù)制度
- 2026年智能溫控器(空調(diào)控制)項(xiàng)目投資計(jì)劃書
- 功能危險(xiǎn)分析(FHA)
- 趣味實(shí)驗(yàn)牛頓擺
- 國(guó)家職業(yè)技術(shù)技能標(biāo)準(zhǔn) 6-20-99-00 增材制造設(shè)備操作員 人社廳發(fā)202231號(hào)
- 廠房建設(shè)工程投標(biāo)方案(技術(shù)方案)
- 2023農(nóng)業(yè)執(zhí)法大比武復(fù)習(xí)試題附答案
- 路燈養(yǎng)護(hù)投標(biāo)方案
- 深價(jià)協(xié)20178號(hào) 深圳市建設(shè)工程造價(jià)咨詢業(yè)收費(fèi)市場(chǎng)價(jià)標(biāo)準(zhǔn)
- 酒精體積分?jǐn)?shù)質(zhì)量分?jǐn)?shù)密度對(duì)照表優(yōu)質(zhì)資料
- 落地式鋼管腳手架工程搭拆施工方案
- 辦公室節(jié)能減排措施
- 數(shù)字信號(hào)處理課程實(shí)驗(yàn)教學(xué)大綱
評(píng)論
0/150
提交評(píng)論