2021-2022學(xué)年山東省泰安三中、新泰二中、寧陽二中三校高考數(shù)學(xué)一模試卷含解析_第1頁
2021-2022學(xué)年山東省泰安三中、新泰二中、寧陽二中三校高考數(shù)學(xué)一模試卷含解析_第2頁
2021-2022學(xué)年山東省泰安三中、新泰二中、寧陽二中三校高考數(shù)學(xué)一模試卷含解析_第3頁
2021-2022學(xué)年山東省泰安三中、新泰二中、寧陽二中三校高考數(shù)學(xué)一模試卷含解析_第4頁
2021-2022學(xué)年山東省泰安三中、新泰二中、寧陽二中三校高考數(shù)學(xué)一模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022年高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有()A.120種 B.240種 C.480種 D.600種2.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.3.復(fù)數(shù)的虛部為()A. B. C.2 D.4.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個數(shù)是()A. B. C. D.5.函數(shù)f(x)=lnA. B. C. D.6.已知等差數(shù)列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,若對任意的恒成立,則實數(shù)().A.6 B.5 C.4 D.37.已知函數(shù)(,)的一個零點是,函數(shù)圖象的一條對稱軸是直線,則當(dāng)取得最小值時,函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()8.已知復(fù)數(shù)滿足,且,則()A.3 B. C. D.9.從某市的中學(xué)生中隨機調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計值為A. B.C. D.10.網(wǎng)格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.411.設(shè),則()A. B. C. D.12.如圖1,《九章算術(shù)》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風(fēng)折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的各項均為正數(shù),記為的前n項和,若,,則________.14.若,i為虛數(shù)單位,則正實數(shù)的值為______.15.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結(jié)果為的式子的序號是_____.16.設(shè)數(shù)列的前項和為,且對任意正整數(shù),都有,則___三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實數(shù)的值.18.(12分)已知橢圓過點,設(shè)橢圓的上頂點為,右頂點和右焦點分別為,,且.(1)求橢圓的標準方程;(2)設(shè)直線交橢圓于,兩點,設(shè)直線與直線的斜率分別為,,若,試判斷直線是否過定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.19.(12分)某市環(huán)保部門對該市市民進行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:組別男235151812女051010713(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環(huán)保關(guān)注者”與性別有關(guān)?(2)若問卷得分不低于80分的人稱為“環(huán)保達人”.視頻率為概率.①在我市所有“環(huán)保達人”中,隨機抽取3人,求抽取的3人中,既有男“環(huán)保達人”又有女“環(huán)保達人”的概率;②為了鼓勵市民關(guān)注環(huán)保,針對此次的調(diào)查制定了如下獎勵方案:“環(huán)保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應(yīng)的概率.如下表:紅包金額(單位:元)1020概率現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)已知函數(shù)()的圖象在處的切線為(為自然對數(shù)的底數(shù))(1)求的值;(2)若,且對任意恒成立,求的最大值.21.(12分)已知函數(shù).(1)當(dāng)時,解不等式;(2)設(shè)不等式的解集為,若,求實數(shù)的取值范圍.22.(10分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設(shè)其中為常數(shù).若方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

首先將五天進行分組,再對名著進行分配,根據(jù)分步乘法計數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數(shù)原理可得不同的閱讀計劃共有:種本題正確選項:【點睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計數(shù)原理的應(yīng)用,易錯點是忽略分組中涉及到的平均分組問題.2.A【解析】

首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【點睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎(chǔ)題.3.D【解析】

根據(jù)復(fù)數(shù)的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復(fù)數(shù)的除法運算和復(fù)數(shù)的概念.4.B【解析】

①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當(dāng)內(nèi)角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎(chǔ)題.5.C【解析】因為fx=lnx2-4x+4x-23=6.C【解析】

若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【詳解】由已知,,又三角形有一個內(nèi)角為,所以,,解得或(舍),故,當(dāng)時,取得最大值,所以.故選:C.【點睛】本題考查等差數(shù)列前n項和的最值問題,考查學(xué)生的計算能力,是一道基礎(chǔ)題.7.B【解析】

根據(jù)函數(shù)的一個零點是,得出,再根據(jù)是對稱軸,得出,求出的最小值與對應(yīng)的,寫出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因為,所以().又,所以,所以,令(),則().因此,當(dāng)取得最小值時,的單調(diào)遞增區(qū)間是().故選:B【點睛】此題考查三角函數(shù)的對稱軸和對稱點,在對稱軸處取得最值,對稱點處函數(shù)值為零,屬于較易題目.8.C【解析】

設(shè),則,利用和求得,即可.【詳解】設(shè),則,因為,則,所以,又,即,所以,所以,故選:C【點睛】本題考查復(fù)數(shù)的乘法法則的應(yīng)用,考查共軛復(fù)數(shù)的應(yīng)用.9.C【解析】

由題可得,解得,則,,所以這部分男生的身高的中位數(shù)的估計值為,故選C.10.A【解析】

采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點與線,屬中檔題.11.C【解析】試題分析:,.故C正確.考點:復(fù)合函數(shù)求值.12.B【解析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.二、填空題:本題共4小題,每小題5分,共20分。13.127【解析】

已知條件化簡可化為,等式兩邊同時除以,則有,通過求解方程可解得,即證得數(shù)列為等比數(shù)列,根據(jù)已知即可解得所求.【詳解】由..故答案為:.【點睛】本題考查通過遞推公式證明數(shù)列為等比數(shù)列,考查了等比的求和公式,考查學(xué)生分析問題的能力,難度較易.14.【解析】

利用復(fù)數(shù)模的運算性質(zhì),即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點睛】本題考查復(fù)數(shù)模的運算性質(zhì),考查推理能力與計算能力,屬于基礎(chǔ)題.15.①②③【解析】

由已知分別結(jié)合和差角的正切及正弦余弦公式進行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應(yīng)用,屬于中檔試題.16.【解析】

利用行列式定義,得到與的關(guān)系,賦值,即可求出結(jié)果?!驹斀狻坑?,令,得,解得。【點睛】本題主要考查行列式定義的應(yīng)用。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.【解析】

將圓的極坐標方程化為直角坐標方程,直線的參數(shù)方程化為普通方程,再根據(jù)直線與圓相切,利用圓心到直線的距離等于半徑,即可求實數(shù)的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【點睛】本題重點考查方程的互化,考查直線與圓的位置關(guān)系,解題的關(guān)鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.18.(1)(2)直線過定點,該定點的坐標為.【解析】

(1)因為橢圓過點,所以①,設(shè)為坐標原點,因為,所以,又,所以②,將①②聯(lián)立解得(負值舍去),所以橢圓的標準方程為.(2)由(1)可知,設(shè),.將代入,消去可得,則,,,所以,所以,此時,所以,此時直線的方程為,即,令,可得,所以直線過定點,該定點的坐標為.19.(1)不能;(2)①;②分布列見解析,.【解析】

(1)根據(jù)題目所給的數(shù)據(jù)可求2×2列聯(lián)表即可;計算K的觀測值K2,對照題目中的表格,得出統(tǒng)計結(jié)論.(2)由相互獨立事件的概率可得男“環(huán)保達人”又有女“環(huán)保達人”的概率:P=1﹣()3﹣()3,解出X的分布列及數(shù)學(xué)期望E(X)即可;【詳解】(1)由圖中表格可得列聯(lián)表如下:非“環(huán)保關(guān)注者”是“環(huán)保關(guān)注者”合計男104555女153045合計2575100將列聯(lián)表中的數(shù)據(jù)代入公式計算得K”的觀測值,所以在犯錯誤的概率不超過0.05的前提下,不能認為是否為“環(huán)保關(guān)注者”與性別有關(guān).(2)視頻率為概率,用戶為男“環(huán)保達人”的概率為.為女“環(huán)保達人”的概率為,①抽取的3名用戶中既有男“環(huán)保達人”又有女“環(huán)保達人”的概率為;②的取值為10,20,30,40.,,,,所以的分布列為10203040.【點睛】本題考查了獨立性檢驗的應(yīng)用問題,考查了概率分布列和期望,計算能力的應(yīng)用問題,是中檔題目.20.(1)a=-1,b=1;(2)-1.【解析】(1)對求導(dǎo)得,根據(jù)函數(shù)的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據(jù)對任意恒成立,等價于對任意恒成立,構(gòu)造,求出的單調(diào)性,由,,,,可得存在唯一的零點,使得,利用單調(diào)性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對任意恒成立對任意恒成立對任意恒成立.令,則.由于,所以在上單調(diào)遞增.又,,,,所以存在唯一的,使得,且當(dāng)時,,時,.即在單調(diào)遞減,在上單調(diào)遞增.所以.又,即,∴.∴.∵,∴.又因為對任意恒成立,又,∴.點睛:利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.21.(1)或;(2)【解析】

(1)使用零點分段法,討論分段的取值范圍,然后取它們的并集,可得結(jié)果.(2)利用等價轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關(guān)系,可得結(jié)果.【詳解】(1)當(dāng)時,原不等式可化為.①當(dāng)時,則,所以;②當(dāng)時,則,所以;⑧當(dāng)時,則,所以.綜上所述:當(dāng)時,不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實數(shù)的取值范圍是.【點睛】本題考查零點分段求解含絕對值不等式,熟練使用分類討論的方法,以及知識的交叉應(yīng)用,同時掌握

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論