河南省信陽市平橋區(qū)明港鎮(zhèn)達標名校2022年中考三模數(shù)學試題含解析_第1頁
河南省信陽市平橋區(qū)明港鎮(zhèn)達標名校2022年中考三模數(shù)學試題含解析_第2頁
河南省信陽市平橋區(qū)明港鎮(zhèn)達標名校2022年中考三模數(shù)學試題含解析_第3頁
河南省信陽市平橋區(qū)明港鎮(zhèn)達標名校2022年中考三模數(shù)學試題含解析_第4頁
河南省信陽市平橋區(qū)明港鎮(zhèn)達標名校2022年中考三模數(shù)學試題含解析_第5頁
免費預覽已結(jié)束,剩余17頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在剛過去的2017年,我國整體經(jīng)濟實力躍上了一個新臺階,城鎮(zhèn)新增就業(yè)1351萬人,數(shù)據(jù)“1351萬”用科學記數(shù)法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×1082.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°3.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示sinα的值,錯誤的是()A. B. C. D.4.如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=;④∠ACB=50°.其中錯誤的是()A.①② B.②④ C.①③ D.③④5.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角6.如圖1是一座立交橋的示意圖(道路寬度忽略不計),A為人口,F(xiàn),G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點O為圓心的一段弧,且,,所對的圓心角均為90°.甲、乙兩車由A口同時駛?cè)肓⒔粯?,均?0m/s的速度行駛,從不同出口駛出,其間兩車到點O的距離y(m)與時間x(s)的對應關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長為150m7.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的主視圖是()A. B. C. D.8.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°9.小明在學習了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使?ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認為其中錯誤的是()A.①② B.②③ C.①③ D.②④10.將拋物線y=x2﹣6x+21向左平移2個單位后,得到新拋物線的解析式為()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+311.下列圖形是軸對稱圖形的有()A.2個 B.3個 C.4個 D.5個12.如圖,在△ABC中,過點B作PB⊥BC于B,交AC于P,過點C作CQ⊥AB,交AB延長線于Q,則△ABC的高是()A.線段PB B.線段BC C.線段CQ D.線段AQ二、填空題:(本大題共6個小題,每小題4分,共24分.)13.不等式組有2個整數(shù)解,則m的取值范圍是_____.14.拋物線y=3x2﹣6x+a與x軸只有一個公共點,則a的值為_____.15.如圖,正方形ABCD的邊長為4,點M在邊DC上,M、N兩點關(guān)于對角線AC對稱,若DM=1,則tan∠ADN=.16.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當PA+PB的值最小時,點P的坐標為_________.17.一等腰三角形,底邊長是18厘米,底邊上的高是18厘米,現(xiàn)在沿底邊依次從下往上畫寬度均為3厘米的矩形,畫出的矩形是正方形時停止,則這個矩形是第_____個.18.如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的切線與AB的延長線交于點P,連接AC,若∠A=30°,PC=3,則BP的長為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為了掌握我市中考模擬數(shù)學試題的命題質(zhì)量與難度系數(shù),命題教師赴我市某地選取一個水平相當?shù)某跞昙夁M行調(diào)研,命題教師將隨機抽取的部分學生成績(得分為整數(shù),滿分為160分)分為5組:第一組85~100;第二組100~115;第三組115~130;第四組130~145;第五組145~160,統(tǒng)計后得到如圖1和如圖2所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖,觀察圖形的信息,回答下列問題:(1)本次調(diào)查共隨機抽取了該年級多少名學生?并將頻數(shù)分布直方圖補充完整;(2)若將得分轉(zhuǎn)化為等級,規(guī)定:得分低于100分評為“D”,100~130分評為“C”,130~145分評為“B”,145~160分評為“A”,那么該年級1600名學生中,考試成績評為“B”的學生大約有多少名?(3)如果第一組有兩名女生和兩名男生,第五組只有一名是男生,針對考試成績情況,命題教師決定從第一組、第五組分別隨機選出一名同學談談做題的感想,請你用列表或畫樹狀圖的方法求出所選兩名學生剛好是一名女生和一名男生的概率.20.(6分)如圖,點D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求證:AB=EF.21.(6分)如圖,四邊形ABCD中,對角線AC、BD相交于點O,若AB,求證:四邊形ABCD是正方形22.(8分)已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點A落在對角線DB上的點F處,折痕為DE,打開矩形紙片,并連接EF.的長為多少;求AE的長;在BE上是否存在點P,使得的值最???若存在,請你畫出點P的位置,并求出這個最小值;若不存在,請說明理由.23.(8分)如圖,在矩形ABCD中,對角線AC的垂直平分線EF分別交AD、AC、BC于點E、O、F,連接CE和AF.(1)求證:四邊形AECF為菱形;(2)若AB=4,BC=8,求菱形AECF的周長.24.(10分)某蔬菜生產(chǎn)基地的氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗階段的某天恒溫系統(tǒng)從開啟到關(guān)閉后,大棚內(nèi)的溫度y(℃)與時間x(h)之間的函數(shù)關(guān)系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關(guān)閉階段.請根據(jù)圖中信息解答下列問題:求這天的溫度y與時間x(0≤x≤24)的函數(shù)關(guān)系式;求恒溫系統(tǒng)設(shè)定的恒定溫度;若大棚內(nèi)的溫度低于10℃時,蔬菜會受到傷害.問這天內(nèi),恒溫系統(tǒng)最多可以關(guān)閉多少小時,才能使蔬菜避免受到傷害?25.(10分)為進一步打造“宜居重慶”,某區(qū)擬在新竣工的矩形廣場的內(nèi)部修建一個音樂噴泉,要求音樂噴泉M到廣場的兩個入口A、B的距離相等,且到廣場管理處C的距離等于A和B之間距離的一半,A、B、C的位置如圖所示.請在答題卷的原圖上利用尺規(guī)作圖作出音樂噴泉M的位置.(要求:不寫已知、求作、作法和結(jié)論,保留作圖痕跡,必須用鉛筆作圖)26.(12分)為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件元,出廠價為每件元,每月銷售量(件)與銷售單價(元)之間的關(guān)系近似滿足一次函數(shù):.李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?設(shè)李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔的總差價最少為多少元?27.(12分)已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由;如果△ABC是等邊三角形,試求這個一元二次方程的根.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據(jù)科學記數(shù)法進行解答.【詳解】1315萬即13510000,用科學記數(shù)法表示為1.351×107.故選擇B.【點睛】本題主要考查科學記數(shù)法,科學記數(shù)法表示數(shù)的標準形式是a×10n(1≤│a│<10且n為整數(shù)).2、C【解析】

根據(jù)扇形的面積公式列方程即可得到結(jié)論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設(shè)扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點睛】本題考了扇形面積的計算的應用,解題的關(guān)鍵是熟練掌握扇形面積計算公式:扇形的面積=.3、D【解析】【分析】根據(jù)在直角三角形中,銳角的正弦為對邊比斜邊,可得答案.【詳解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正確,不符合題意;B、在Rt△ABC中,sinα=,故B正確,不符合題意;C、在Rt△ACD中,sinα=,故C正確,不符合題意;D、在Rt△ACD中,cosα=,故D錯誤,符合題意,故選D.【點睛】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.4、B【解析】

先根據(jù)題意畫出圖形,再根據(jù)平行線的性質(zhì)及方向角的描述方法解答即可.【詳解】如圖所示,由題意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C處的北偏西50°,故①正確;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B處的北偏西120°,故②錯誤;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=,故③正確;∵∠6=90°﹣∠5=40°,即公路AC和BC的夾角是40°,故④錯誤.故選B.【點睛】本題考查的是方向角,平行線的性質(zhì),特殊角的三角函數(shù)值,解答此類題需要從運動的角度,正確畫出方位角,再結(jié)合平行線的性質(zhì)求解.5、B【解析】

利用對頂角的性質(zhì)、平方根的性質(zhì)、銳角和鈍角的定義分別判斷后即可確定正確的選項.【詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.【點睛】考查了命題與定理的知識,解題的關(guān)鍵是了解對頂角的性質(zhì)、平方根的性質(zhì)、銳角和鈍角的定義,難度不大.6、C【解析】分析:結(jié)合2個圖象分析即可.詳解:A.根據(jù)圖2甲的圖象可知甲車在立交橋上共行駛時間為:,故正確.B.3段弧的長度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯誤.D.立交橋總長為:故正確.故選C.點睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關(guān)鍵.7、A【解析】試題分析:觀察圖形可知,該幾何體的主視圖是.故選A.考點:簡單組合體的三視圖.8、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質(zhì)的應用,能正確作出輔助線是解此題的關(guān)鍵.9、B【解析】

A、∵四邊形ABCD是平行四邊形,當①AB=BC時,平行四邊形ABCD是菱形,當②∠ABC=90°時,菱形ABCD是正方形,故此選項正確,不合題意;B、∵四邊形ABCD是平行四邊形,∴當②∠ABC=90°時,平行四邊形ABCD是矩形,當AC=BD時,這是矩形的性質(zhì),無法得出四邊形ABCD是正方形,故此選項錯誤,符合題意;C、∵四邊形ABCD是平行四邊形,當①AB=BC時,平行四邊形ABCD是菱形,當③AC=BD時,菱形ABCD是正方形,故此選項正確,不合題意;D、∵四邊形ABCD是平行四邊形,∴當②∠ABC=90°時,平行四邊形ABCD是矩形,當④AC⊥BD時,矩形ABCD是正方形,故此選項正確,不合題意.故選C.10、D【解析】

直接利用配方法將原式變形,進而利用平移規(guī)律得出答案.【詳解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣16]+21=(x﹣6)2+1,故y=(x﹣6)2+1,向左平移2個單位后,得到新拋物線的解析式為:y=(x﹣4)2+1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,熟記函數(shù)圖象平移的規(guī)律并正確配方將原式變形是解題關(guān)鍵.11、C【解析】試題分析:根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據(jù)此對圖中的圖形進行判斷.解:圖(1)有一條對稱軸,是軸對稱圖形,符合題意;圖(2)不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;圖(3)有二條對稱軸,是軸對稱圖形,符合題意;圖(3)有五條對稱軸,是軸對稱圖形,符合題意;圖(3)有一條對稱軸,是軸對稱圖形,符合題意.故軸對稱圖形有4個.故選C.考點:軸對稱圖形.12、C【解析】

根據(jù)三角形高線的定義即可解題.【詳解】解:當AB為△ABC的底時,過點C向AB所在直線作垂線段即為高,故CQ是△ABC的高,故選C.【點睛】本題考查了三角形高線的定義,屬于簡單題,熟悉高線的作法是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1<m≤2【解析】

首先根據(jù)不等式恰好有個整數(shù)解求出不等式組的解集為,再確定.【詳解】不等式組有個整數(shù)解,其整數(shù)解有、這個,.故答案為:.【點睛】此題主要考查了解不等式組,關(guān)鍵是正確理解解集的規(guī)律:同大取大,同小取小,大小小大中間找,大大小小找不到.14、3【解析】

根據(jù)拋物線與x軸只有一個公共交點,則判別式等于0,據(jù)此即可求解.【詳解】∵拋物線y=3x2﹣6x+a與x軸只有一個公共點,∴判別式Δ=36-12a=0,解得:a=3,故答案為3【點睛】本題考查了二次函數(shù)圖象與x軸的公共點的個數(shù)的判定方法,如果△>0,則拋物線與x軸有兩個不同的交點;如果△=0,與x軸有一個交點;如果△<0,與x軸無交點.15、【解析】

M、N兩點關(guān)于對角線AC對稱,所以CM=CN,進而求出CN的長度.再利用∠ADN=∠DNC即可求得tan∠ADN.【詳解】解:在正方形ABCD中,BC=CD=1.

∵DM=1,

∴CM=2,

∵M、N兩點關(guān)于對角線AC對稱,

∴CN=CM=2.

∵AD∥BC,

∴∠ADN=∠DNC,故答案為【點睛】本題綜合考查了正方形的性質(zhì),軸對稱的性質(zhì)以及銳角三角函數(shù)的定義.16、(0,).【解析】試題分析:把點A坐標代入y=x+4得a=3,即A(﹣1,3),把點A坐標代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數(shù)解析式得:,解得:,,即點B坐標為:(﹣3,1),作出點A關(guān)于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標為:(1,3),設(shè)直線BC的解析式為:y=ax+b,把B、C的坐標代入得:,解得:,所以函數(shù)解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數(shù)與一次函數(shù)的交點問題;軸對稱-最短路線問題.17、5【解析】

根據(jù)相似三角形的相似比求得頂點到這個正方形的長,再根據(jù)矩形的寬求得是第幾張.【詳解】解:已知剪得的紙條中有一張是正方形,則正方形中平行于底邊的邊是3,所以根據(jù)相似三角形的性質(zhì)可設(shè)從頂點到這個正方形的線段為x,則318=x所以另一段長為18-3=15,因為15÷3=5,所以是第5張.故答案為:5.【點睛】本題主要考查了相相似三角形的判定和性質(zhì),關(guān)鍵是根據(jù)似三角形的性質(zhì)及等腰三角形的性質(zhì)的綜合運用解答.18、3.【解析】試題分析:連接OC,已知OA=OC,∠A=30°,所以∠OCA=∠A=30°,由三角形外角的性質(zhì)可得∠COB=∠A+∠ACO=60°,又因PC是⊙O切線,可得∠PCO=90°,∠P=30°,再由PC=3,根據(jù)銳角三角函數(shù)可得OC=PC?tan30°=3,PC=2OC=23,即可得PB=PO﹣OB=3.考點:切線的性質(zhì);銳角三角函數(shù).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)50(2)420(3)P=【解析】試題分析:(1)首先根據(jù)題意得:本次調(diào)查共隨機抽取了該年級學生數(shù)為:20÷40%=50(名);則可求得第五組人數(shù)為:50﹣4﹣8﹣20﹣14=4(名);即可補全統(tǒng)計圖;(2)由題意可求得130~145分所占比例,進而求出答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與所選兩名學生剛好是一名女生和一名男生的情況,再利用概率公式求解即可求得答案.試題解析:(1)根據(jù)題意得:本次調(diào)查共隨機抽取了該年級學生數(shù)為:20÷40%=50(名);則第五組人數(shù)為:50﹣4﹣8﹣20﹣14=4(名);如圖:(2)根據(jù)題意得:考試成績評為“B”的學生大約有×1600=448(名),答:考試成績評為“B”的學生大約有448名;(3)畫樹狀圖得:∵共有16種等可能的結(jié)果,所選兩名學生剛好是一名女生和一名男生的有8種情況,∴所選兩名學生剛好是一名女生和一名男生的概率為:=.考點:1、樹狀圖法與列表法求概率的知識,2、直方圖與扇形統(tǒng)計圖的知識視頻20、見解析【解析】試題分析:依據(jù)題意,可通過證△ABC≌△EFD來得出AB=EF的結(jié)論,兩三角形中,已知的條件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根據(jù)AAS判定兩三角形全等解題.

證明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC與△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.21、詳見解析.【解析】

四邊形ABCD是正方形,利用已知條件先證明四邊形ABCD是平行四邊形,再證明四邊形ABCD是矩形,再根據(jù)對角線垂直的矩形是正方形即可證明四邊形ABCD是正方形.【詳解】證明:在四邊形ABCD中,OA=OC,OB=OD,∴四邊形ABCD是平行四邊形,∵OA=OB=OC=OD,又∵AC=AO+OC,BD=OB+DO,∴AC=BD,∴平行四邊形是矩形,在△AOB中,,∴△AOB是直角三角形,即AC⊥BD,∴矩形ABCD是正方形.【點睛】本題考查了平行四邊形的判定、矩形的判定、正方形的判定以及勾股定理的運用和勾股定理的逆定理的運用,題目的綜合性很強.22、(1);(2)的長為;(1)存在,畫出點P的位置如圖1見解析,的最小值為

.【解析】

(1)根據(jù)勾股定理解答即可;(2)設(shè)AE=x,根據(jù)全等三角形的性質(zhì)和勾股定理解答即可;(1)延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,利用相似三角形的判定和性質(zhì)解答即可.【詳解】(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.故答案為5;(2)設(shè)AE=x.∵AB=4,∴BE=4﹣x,在矩形ABCD中,根據(jù)折疊的性質(zhì)知:Rt△FDE≌Rt△ADE,∴FE=AE=x,F(xiàn)D=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根據(jù)勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的長為;(1)存在,如圖1,延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,則點P即為所求,此時有:PC=PG,∴PF+PC=GF.過點F作FH⊥BC,交BC于點H,則有FH∥DC,∴△BFH∽△BDC,∴,即,∴,∴GH=BG+BH.在Rt△GFH中,根據(jù)勾股定理,得:GF,即PF+PC的最小值為.【點睛】本題考查了四邊形的綜合題,涉及了折疊的性質(zhì)、勾股定理的應用、相似三角形的判定和性質(zhì)等知識,知識點較多,難度較大,解答本題的關(guān)鍵是掌握設(shè)未知數(shù)列方程的思想.23、(1)見解析;(2)1【解析】

(1)根據(jù)ASA推出:△AEO≌△CFO;根據(jù)全等得出OE=OF,推出四邊形是平行四邊形,再根據(jù)EF⊥AC即可推出四邊形是菱形;(2)根據(jù)線段垂直平分線性質(zhì)得出AF=CF,設(shè)AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到結(jié)論.【詳解】(1)∵EF是AC的垂直平分線,∴AO=OC,∠AOE=∠COF=90°.∵四邊形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴平行四邊形AECF是菱形;(2)設(shè)AF=x.∵EF是AC的垂直平分線,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周長為1.【點睛】本題考查了勾股定理,矩形性質(zhì),平行四邊形的判定,菱形的判定,全等三角形的性質(zhì)和判定,平行線的性質(zhì)等知識點的綜合運用,用了方程思想.24、(1)y關(guān)于x的函數(shù)解析式為;(2)恒溫系統(tǒng)設(shè)定恒溫為20°C;(3)恒溫系統(tǒng)最多關(guān)閉10小時,蔬菜才能避免受到傷害.【解析】分析:(1)應用待定系數(shù)法分段求函數(shù)解析式;(2)觀察圖象可得;(3)代入臨界值y=10即可.詳解:(1)設(shè)線段AB解析式為y=k1x+b(k≠0)∵線段AB過點(0,10),(2,14)代入得解得∴AB解析式為:y=2x+10(0≤x<5)∵B在線段AB上當x=5時,y=20∴B坐標為(5,20)∴線段BC的解析式為:y=20(5≤x<10)設(shè)雙曲線CD解析式為:y=(k2≠0)∵C(10,20)∴k2=200∴雙曲線CD解析式為:y=(10≤x≤24)∴y關(guān)于x的函數(shù)解析式為:(2)由(1)恒溫系統(tǒng)設(shè)定恒溫為20°C(3)把y=10代入y=中,解得,x=20∴20-10=10答:恒溫系統(tǒng)最多關(guān)閉10小時,蔬菜才能避免受到傷害.點睛:本題為實際應用背景的函數(shù)綜合題,考查求得一次函數(shù)、反比例函數(shù)和常函數(shù)關(guān)系式.解答時應注意臨界點的應用.25、解:作AB的垂直平分線,以點C為圓心,以AB的一半為半徑畫弧交AB的垂直平分線于點M即可.【解析】

易得M在AB的垂直平分線上,且到C的距離等于AB的一半.26、(1)政府這個月為他承擔的總差價為644元;(2)當銷售單價定為34元時,每月可獲得最大利潤14

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論