版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
講參數(shù)方程1、參數(shù)方程的概念講參數(shù)方程1、參數(shù)方程的概念1(1)在取定的坐標系中,如果曲線上任意一點的坐標x、y都是某個變數(shù)t的函數(shù),即并且對于t的每一個允許值,由上述方程組所確定的點M(x,y)都在這條曲線上,那么上述方程組就叫做這條曲線的參數(shù)方程,聯(lián)系x、y之間關(guān)系的變數(shù)叫做參變數(shù),簡稱參數(shù)。參數(shù)方程的參數(shù)可以是有物理、幾何意義的變數(shù),也可以是沒有明顯意義的變數(shù)。(2)相對于參數(shù)方程來說,前面學過的直接給出曲線上點的坐標關(guān)系的方程,叫做曲線的普通方程。(1)在取定的坐標系中,如果曲線上任意一點的坐標x、y都是2(3)參數(shù)方程與普通方程的互化x2+y2=r2注:1、參數(shù)方程的特點是沒有直接體現(xiàn)曲線上點的橫、縱坐標之間的關(guān)系,而是分別體現(xiàn)了點的橫、縱坐標與參數(shù)之間的關(guān)系。2、參數(shù)方程的應(yīng)用往往是在x與y直接關(guān)系很難或不可能體現(xiàn)時,通過參數(shù)建立間接的聯(lián)系。(3)參數(shù)方程與普通方程的互化x2+y2=r2注:1、參數(shù)方32、圓的參數(shù)方程2、圓的參數(shù)方程41.圓的參數(shù)方程(1)軌跡問題(2)求最值4.應(yīng)用5.小結(jié)2.參數(shù)方程與普通方程的概念3.參數(shù)方程與普通方程的互化(1)圓心在原點的圓參數(shù)方程(2)圓心不在原點的圓的參數(shù)方程1.圓的參數(shù)方程(1)軌跡問題(2)求最值4.應(yīng)用5.小結(jié)5觀察1①并且對于的每一個允許值,由方程組①所確定的點P(x,y),都在圓O上.
5o思考1:圓心為原點,半徑為r的圓的參數(shù)方程是什么呢?我們把方程組①叫做圓心在原點、半徑為r的圓的參數(shù)方程,是參數(shù).觀察1①并且對于的每一個允許值,由方程組①所5o思6觀察2(a,b)r又所以觀察2(a,b)r又所以7例1、已知圓方程x2+y2+2x-6y+9=0,將它化為參數(shù)方程。解:x2+y2+2x-6y+9=0化為標準方程,(x+1)2+(y-3)2=1,∴參數(shù)方程為(θ為參數(shù))例1、已知圓方程x2+y2+2x-6y+9=0,將它化為參8練習:1.填空:已知圓O的參數(shù)方程是(0≤<2)⑴如果圓上點P所對應(yīng)的參數(shù),則點P的坐標是
練習:(0≤<2)⑴如果圓上點P所對應(yīng)的參數(shù)9A的圓,化為標準方程為(2,-2)1A的圓,化為標準方程為(2,-2)110例3例2.
如圖,已知點P是圓x2+y2=16上的一個動點,點A是x軸上的定點,坐標為(12,0).當點P在圓上運動時,線段PA中點M的軌跡是什么?例3例2.如圖,已知點P是圓x2+y2=16上的一個動點,11xMPAyO解:設(shè)M的坐標為(x,y),∴可設(shè)點P坐標為(4cosθ,4sinθ)∴點M的軌跡是以(6,0)為圓心、2為半徑的圓。由中點公式得:點M的軌跡方程為x=6+2cosθy=2sinθx=4cosθy=4sinθ
圓x2+y2=16的參數(shù)方程為2例2.
如圖,已知點P是圓x2+y2=16上的一個動點,點A是x軸上的定點,坐標為(12,0).當點P在圓上運動時,線段PA中點M的軌跡是什么?例題:xMPAyO解:設(shè)M的坐標為(x,y),∴可設(shè)點P坐標為(4121解:設(shè)M的坐標為(x,y),∴點M的軌跡是以(6,0)為圓心、2為半徑的圓。由中點坐標公式得:點P的坐標為(2x-12,2y)∴(2x-12)2+(2y)2=16即M的軌跡方程為(x-6)2+y2=4∵點P在圓x2+y2=16上xMPAyO例2.
如圖,已知點P是圓x2+y2=16上的一個動點,點A是x軸上的定點,坐標為(12,0).當點P在圓上運動時,線段PA中點M的軌跡是什么?例題:1解:設(shè)M的坐標為(x,y),∴點M的軌跡是以(6,0)為圓13例3、已知點P(x,y)是圓x2+y2-6x-4y+12=0上動點,求(1)x2+y2的最值,(2)x+y的最值,(3)P到直線x+y-1=0的距離d的最值。解:圓x2+y2-6x-4y+12=0即(x-3)2+(y-2)2=1,用參數(shù)方程表示為由于點P在圓上,所以可設(shè)P(3+cosθ,2+sinθ),(1)x2+y2=(3+cosθ)2+(2+sinθ)2=14+4sinθ+6cosθ=14+2sin(θ+ψ).(其中tanψ=3/2)例3、已知點P(x,y)是圓x2+y2-6x-4y+1214∴x2+y2的最大值為14+2,最小值為14-2。(2)x+y=3+cosθ+2+sinθ=5+sin(θ+)∴x+y的最大值為5+,最小值為5-。(3)顯然當sin(θ+)=1時,d取最大值,最小值,分別為,?!鄕2+y2的最大值為14+2,最小值為15小結(jié):1、圓的參數(shù)方程2、參數(shù)方程與普通方程的概念3、圓的參數(shù)方程與普通方程的互化4、求軌跡方程的三種方法:⑴相關(guān)點點問題(代入法);⑵參數(shù)法;⑶定義法5、求最值小結(jié):16例4、將下列參數(shù)方程化為普通方程:(1)(2)(3)x=t+1/ty=t2+1/t2(1)(x-2)2+y2=9(2)y=1-2x2(-1≤x≤1)(3)x2-y=2(X≥2或x≤-2)步驟:(1)消參;(2)求定義域。例4、將下列參數(shù)方程化為普通方程:(1)(2)(3)x=t+17
85.每一年,我都更加相信生命的浪費是在于:我們沒有獻出愛,我們沒有使用力量,我們表現(xiàn)出自私的謹慎,不去冒險,避開痛苦,也失去了快樂。――[約翰·B·塔布]86.微笑,昂首闊步,作深呼吸,嘴里哼著歌兒。倘使你不會唱歌,吹吹口哨或用鼻子哼一哼也可。如此一來,你想讓自己煩惱都不可能。――[戴爾·卡內(nèi)基]87.當一切毫無希望時,我看著切石工人在他的石頭上,敲擊了上百次,而不見任何裂痕出現(xiàn)。但在第一百零一次時,石頭被劈成兩半。我體會到,并非那一擊,而是前面的敲打使它裂開。――[賈柯·瑞斯]88.每個意念都是一場祈禱。――[詹姆士·雷德非]89.虛榮心很難說是一種惡行,然而一切惡行都圍繞虛榮心而生,都不過是滿足虛榮心的手段。――[柏格森]90.習慣正一天天地把我們的生命變成某種定型的化石,我們的心靈正在失去自由,成為平靜而沒有激情的時間之流的奴隸。――[托爾斯泰]91.要及時把握夢想,因為夢想一死,生命就如一只羽翼受創(chuàng)的小鳥,無法飛翔。――[蘭斯頓·休斯]92.生活的藝術(shù)較像角力的藝術(shù),而較不像跳舞的藝術(shù);最重要的是:站穩(wěn)腳步,為無法預見的攻擊做準備。――[瑪科斯·奧雷利阿斯]93.在安詳靜謐的大自然里,確實還有些使人煩惱.懷疑.感到壓迫的事。請你看看蔚藍的天空和閃爍的星星吧!你的心將會平靜下來。[約翰·納森·愛德瓦茲]94.對一個適度工作的人而言,快樂來自于工作,有如花朵結(jié)果前擁有彩色的花瓣。――[約翰·拉斯金]95.沒有比時間更容易浪費的,同時沒有比時間更珍貴的了,因為沒有時間我們幾乎無法做任何事。――[威廉·班]96.人生真正的歡欣,就是在于你自認正在為一個偉大目標運用自己;而不是源于獨自發(fā)光.自私渺小的憂煩軀殼,只知抱怨世界無法帶給你快樂。――[蕭伯納]97.有三個人是我的朋友愛我的人.恨我的人.以及對我冷漠的人。愛我的人教我溫柔;恨我的人教我謹慎;對我冷漠的人教我自立。――[J·E·丁格]98.過去的事已經(jīng)一去不復返。聰明的人是考慮現(xiàn)在和未來,根本無暇去想過去的事。――[英國哲學家培根]99.真正的發(fā)現(xiàn)之旅不只是為了尋找全新的景色,也為了擁有全新的眼光。――[馬塞爾·普勞斯特]100.這個世界總是充滿美好的事物,然而能看到這些美好事物的人,事實上是少之又少。――[羅丹]101.稱贊不但對人的感情,而且對人的理智也發(fā)生巨大的作用,在這種令人愉快的影響之下,我覺得更加聰明了,各種想法,以異常的速度接連涌入我的腦際。――[托爾斯泰]102.人生過程的景觀一直在變化,向前跨進,就看到與初始不同的景觀,再上前去,又是另一番新的氣候――。[叔本華]103.為何我們?nèi)绱思臣秤诿?,如果一個人和他的同伴保持不一樣的速度,或許他耳中聽到的是不同的旋律,讓他隨他所聽到的旋律走,無論快慢或遠近。――[梭羅]104.我們最容易不吝惜的是時間,而我們應(yīng)該最擔心的也是時間;因為沒有時間的話,我們在世界上什么也不能做。――[威廉·彭]105.人類的悲劇,就是想延長自己的壽命。我們往往只憧憬地平線那端的神奇【違禁詞,被屏蔽】,而忘了去欣賞今天窗外正在盛開的玫瑰花。――[戴爾·卡內(nèi)基]106.休息并非無所事事,夏日炎炎時躺在樹底下的草地,聽著潺潺的水聲,看著飄過的白云,亦非浪費時間。――[約翰·羅伯克]107.沒有人會只因年齡而衰老,我們是因放棄我們的理想而衰老。年齡會使皮膚老化,而放棄熱情卻會使靈魂老化。――[撒母耳·厄爾曼]108.快樂和智能的區(qū)別在于:自認最快樂的人實際上就是最快樂的,但自認為最明智的人一般而言卻是最愚蠢的。――[卡雷貝·C·科爾頓]109.每個人皆有連自己都不清楚的潛在能力。無論是誰,在千鈞一發(fā)之際,往往能輕易解決從前認為極不可能解決的事。――[戴爾·卡內(nèi)基]110.每天安靜地坐十五分鐘·傾聽你的氣息,感覺它,感覺你自己,并且試著什么都不想。――[艾瑞克·佛洛姆]111.你知道何謂沮喪---就是你用一輩子工夫,在公司或任何領(lǐng)域里往上攀爬,卻在抵達最高處的同時,發(fā)現(xiàn)自己爬錯了墻頭。--[坎伯]112.「偉大」這個名詞未必非出現(xiàn)在規(guī)模很大的事情不可;生活中微小之處,照樣可以偉大。――[布魯克斯]113.人生的目的有二:先是獲得你想要的;然后是享受你所獲得的。只有最明智的人類做到第二點。――[羅根·皮沙爾·史密斯]114.要經(jīng)常聽.時常想.時時學習,才是真正的生活方式。對任何事既不抱希望,也不肯學習的人,沒有生存的資格。――[阿薩·赫爾帕斯爵士]115.旅行的精神在于其自由,完全能夠隨心所欲地去思考.去感覺.去行動的自由。――[威廉·海茲利特]116.昨天是張退票的支票,明天是張信用卡,只有今天才是現(xiàn)金;要善加利用。――[凱·里昂]117.所有的財富都是建立在健康之上。浪費金錢是愚蠢的事,浪費健康則是二級的謀殺罪。――[B·C·福比斯]118.明知不可而為之的干勁可能會加速走向油盡燈枯的境地,努力挑戰(zhàn)自己的極限固然是令人激奮的經(jīng)驗,但適度的休息絕不可少,否則遲早會崩潰。――[邁可·漢默]119.進步不是一條筆直的過程,而是螺旋形的路徑,時而前進,時而折回,停滯后又前進,有失有得,有付出也有收獲。――[奧古斯汀]120.無論那個時代,能量之所以能夠帶來奇跡,主要源于一股活力,而活力的核心元素乃是意志。無論何處,活力皆是所謂“人格力量”的原動力,也是讓一切偉大行動得以持續(xù)的力量。――[史邁爾斯]121.有兩種人是沒有什么價值可言的:一種人無法做被吩咐去做的事,另一種人只能做被吩咐去做的事。――[C·H·K·寇蒂斯]122.對于不會利用機會的人而言,機會就像波浪般奔向茫茫的大海,或是成為不會孵化的蛋。――[喬治桑]123.未來不是固定在那里等你趨近的,而是要靠你創(chuàng)造。未來的路不會靜待被發(fā)現(xiàn),而是需要開拓,開路的過程,便同時改變了你和未來。――[約翰·夏爾]124.一個人的年紀就像他的鞋子的大小那樣不重要。如果他對生活的興趣不受到傷害,如果他很慈悲,如果時間使他成熟而沒有了偏見。――[道格拉斯·米爾多]125.大凡宇宙萬物,都存在著正、反兩面,所以要養(yǎng)成由后面.里面,甚至是由相反的一面,來觀看事物的態(tài)度――。[老子]126.在寒冷中顫抖過的人倍覺太陽的溫暖,經(jīng)歷過各種人生煩惱的人,才懂得生命的珍貴。――[懷特曼]127.一般的偉人總是讓身邊的人感到渺??;但真正的偉人卻能讓身邊的人認為自己很偉大。――[G.K.Chesteron]128.醫(yī)生知道的事如此的少,他們的收費卻是如此的高。――[馬克吐溫]129.問題不在于:一個人能夠輕蔑、藐視或批評什么,而是在于:他能夠喜愛、看重以及欣賞什么。――[約翰·魯斯金]參數(shù)方程優(yōu)秀課件18講參數(shù)方程1、參數(shù)方程的概念講參數(shù)方程1、參數(shù)方程的概念19(1)在取定的坐標系中,如果曲線上任意一點的坐標x、y都是某個變數(shù)t的函數(shù),即并且對于t的每一個允許值,由上述方程組所確定的點M(x,y)都在這條曲線上,那么上述方程組就叫做這條曲線的參數(shù)方程,聯(lián)系x、y之間關(guān)系的變數(shù)叫做參變數(shù),簡稱參數(shù)。參數(shù)方程的參數(shù)可以是有物理、幾何意義的變數(shù),也可以是沒有明顯意義的變數(shù)。(2)相對于參數(shù)方程來說,前面學過的直接給出曲線上點的坐標關(guān)系的方程,叫做曲線的普通方程。(1)在取定的坐標系中,如果曲線上任意一點的坐標x、y都是20(3)參數(shù)方程與普通方程的互化x2+y2=r2注:1、參數(shù)方程的特點是沒有直接體現(xiàn)曲線上點的橫、縱坐標之間的關(guān)系,而是分別體現(xiàn)了點的橫、縱坐標與參數(shù)之間的關(guān)系。2、參數(shù)方程的應(yīng)用往往是在x與y直接關(guān)系很難或不可能體現(xiàn)時,通過參數(shù)建立間接的聯(lián)系。(3)參數(shù)方程與普通方程的互化x2+y2=r2注:1、參數(shù)方212、圓的參數(shù)方程2、圓的參數(shù)方程221.圓的參數(shù)方程(1)軌跡問題(2)求最值4.應(yīng)用5.小結(jié)2.參數(shù)方程與普通方程的概念3.參數(shù)方程與普通方程的互化(1)圓心在原點的圓參數(shù)方程(2)圓心不在原點的圓的參數(shù)方程1.圓的參數(shù)方程(1)軌跡問題(2)求最值4.應(yīng)用5.小結(jié)23觀察1①并且對于的每一個允許值,由方程組①所確定的點P(x,y),都在圓O上.
5o思考1:圓心為原點,半徑為r的圓的參數(shù)方程是什么呢?我們把方程組①叫做圓心在原點、半徑為r的圓的參數(shù)方程,是參數(shù).觀察1①并且對于的每一個允許值,由方程組①所5o思24觀察2(a,b)r又所以觀察2(a,b)r又所以25例1、已知圓方程x2+y2+2x-6y+9=0,將它化為參數(shù)方程。解:x2+y2+2x-6y+9=0化為標準方程,(x+1)2+(y-3)2=1,∴參數(shù)方程為(θ為參數(shù))例1、已知圓方程x2+y2+2x-6y+9=0,將它化為參26練習:1.填空:已知圓O的參數(shù)方程是(0≤<2)⑴如果圓上點P所對應(yīng)的參數(shù),則點P的坐標是
練習:(0≤<2)⑴如果圓上點P所對應(yīng)的參數(shù)27A的圓,化為標準方程為(2,-2)1A的圓,化為標準方程為(2,-2)128例3例2.
如圖,已知點P是圓x2+y2=16上的一個動點,點A是x軸上的定點,坐標為(12,0).當點P在圓上運動時,線段PA中點M的軌跡是什么?例3例2.如圖,已知點P是圓x2+y2=16上的一個動點,29xMPAyO解:設(shè)M的坐標為(x,y),∴可設(shè)點P坐標為(4cosθ,4sinθ)∴點M的軌跡是以(6,0)為圓心、2為半徑的圓。由中點公式得:點M的軌跡方程為x=6+2cosθy=2sinθx=4cosθy=4sinθ
圓x2+y2=16的參數(shù)方程為2例2.
如圖,已知點P是圓x2+y2=16上的一個動點,點A是x軸上的定點,坐標為(12,0).當點P在圓上運動時,線段PA中點M的軌跡是什么?例題:xMPAyO解:設(shè)M的坐標為(x,y),∴可設(shè)點P坐標為(4301解:設(shè)M的坐標為(x,y),∴點M的軌跡是以(6,0)為圓心、2為半徑的圓。由中點坐標公式得:點P的坐標為(2x-12,2y)∴(2x-12)2+(2y)2=16即M的軌跡方程為(x-6)2+y2=4∵點P在圓x2+y2=16上xMPAyO例2.
如圖,已知點P是圓x2+y2=16上的一個動點,點A是x軸上的定點,坐標為(12,0).當點P在圓上運動時,線段PA中點M的軌跡是什么?例題:1解:設(shè)M的坐標為(x,y),∴點M的軌跡是以(6,0)為圓31例3、已知點P(x,y)是圓x2+y2-6x-4y+12=0上動點,求(1)x2+y2的最值,(2)x+y的最值,(3)P到直線x+y-1=0的距離d的最值。解:圓x2+y2-6x-4y+12=0即(x-3)2+(y-2)2=1,用參數(shù)方程表示為由于點P在圓上,所以可設(shè)P(3+cosθ,2+sinθ),(1)x2+y2=(3+cosθ)2+(2+sinθ)2=14+4sinθ+6cosθ=14+2sin(θ+ψ).(其中tanψ=3/2)例3、已知點P(x,y)是圓x2+y2-6x-4y+1232∴x2+y2的最大值為14+2,最小值為14-2。(2)x+y=3+cosθ+2+sinθ=5+sin(θ+)∴x+y的最大值為5+,最小值為5-。(3)顯然當sin(θ+)=1時,d取最大值,最小值,分別為,。∴x2+y2的最大值為14+2,最小值為33小結(jié):1、圓的參數(shù)方程2、參數(shù)方程與普通方程的概念3、圓的參數(shù)方程與普通方程的互化4、求軌跡方程的三種方法:⑴相關(guān)點點問題(代入法);⑵參數(shù)法;⑶定義法5、求最值小結(jié):34例4、將下列參數(shù)方程化為普通方程:(1)(2)(3)x=t+1/ty=t2+1/t2(1)(x-2)2+y2=9(2)y=1-2x2(-1≤x≤1)(3)x2-y=2(X≥2或x≤-2)步驟:(1)消參;(2)求定義域。例4、將下列參數(shù)方程化為普通方程:(1)(2)(3)x=t+35
85.每一年,我都更加相信生命的浪費是在于:我們沒有獻出愛,我們沒有使用力量,我們表現(xiàn)出自私的謹慎,不去冒險,避開痛苦,也失去了快樂。――[約翰·B·塔布]86.微笑,昂首闊步,作深呼吸,嘴里哼著歌兒。倘使你不會唱歌,吹吹口哨或用鼻子哼一哼也可。如此一來,你想讓自己煩惱都不可能。――[戴爾·卡內(nèi)基]87.當一切毫無希望時,我看著切石工人在他的石頭上,敲擊了上百次,而不見任何裂痕出現(xiàn)。但在第一百零一次時,石頭被劈成兩半。我體會到,并非那一擊,而是前面的敲打使它裂開。――[賈柯·瑞斯]88.每個意念都是一場祈禱。――[詹姆士·雷德非]89.虛榮心很難說是一種惡行,然而一切惡行都圍繞虛榮心而生,都不過是滿足虛榮心的手段。――[柏格森]90.習慣正一天天地把我們的生命變成某種定型的化石,我們的心靈正在失去自由,成為平靜而沒有激情的時間之流的奴隸。――[托爾斯泰]91.要及時把握夢想,因為夢想一死,生命就如一只羽翼受創(chuàng)的小鳥,無法飛翔。――[蘭斯頓·休斯]92.生活的藝術(shù)較像角力的藝術(shù),而較不像跳舞的藝術(shù);最重要的是:站穩(wěn)腳步,為無法預見的攻擊做準備。――[瑪科斯·奧雷利阿斯]93.在安詳靜謐的大自然里,確實還有些使人煩惱.懷疑.感到壓迫的事。請你看看蔚藍的天空和閃爍的星星吧!你的心將會平靜下來。[約翰·納森·愛德瓦茲]94.對一個適度工作的人而言,快樂來自于工作,有如花朵結(jié)果前擁有彩色的花瓣。――[約翰·拉斯金]95.沒有比時間更容易浪費的,同時沒有比時間更珍貴的了,因為沒有時間我們幾乎無法做任何事。――[威廉·班]96.人生真正的歡欣,就是在于你自認正在為一個偉大目標運用自己;而不是源于獨自發(fā)光.自私渺小的憂煩軀殼,只知抱怨世界無法帶給你快樂。――[蕭伯納]97.有三個人是我的朋友愛我的人.恨我的人.以及對我冷漠的人。愛我的人教我溫柔;恨我的人教我謹慎;對我冷漠的人教我自立。――[J·E·丁格]98.過去的事已經(jīng)一去不復返。聰明的人是考慮現(xiàn)在和未來,根本無暇去想過去的事。――[英國哲學家培根]99.真正的發(fā)現(xiàn)之旅不只是為了尋找全新的景色,也為了擁有全新的眼光。――[馬塞爾·普勞斯特]100.這個世界總是充滿美好的事物,然而能看到這些美好事物的人,事實上是少之又少。――[羅丹]101.稱贊不但對人的感情,而且對人的理智也發(fā)生巨大的作用,在這種令人愉快的影響之下,我覺得更加聰明了,各種想法,以異常的速度接連涌入我的腦際。――[托爾斯泰]102.人生過程的景觀一直在變化,向前跨進,就看到與初始不同的景觀,再上前去,又是另一番新的氣候――。[叔本華]103.為何我們?nèi)绱思臣秤诿?,如果一個人和他的同伴保持不一樣的速度,或許他耳中聽到的是不同的旋律,讓他隨他所聽到的旋律走,無論快慢或遠近。――[梭羅]104.我們最容易不吝惜的是時間,而我們應(yīng)該最擔心的也是時間;因為沒有時間的話,我們在世界上什么也不能做。――[威廉·彭]105.人類的悲劇,就是想延長自己的壽命。我們往往只憧憬地平線那端的神奇【違禁詞,被屏蔽】,而忘了去欣賞今天窗外正在盛開的玫瑰花。――[戴爾·卡內(nèi)基]106.休息并非無所事事,夏日炎炎時躺在樹底下的草地,聽著潺潺的水聲,看著飄過的白云,亦非浪費時間。――[約翰·羅伯克]107.沒有人會只因年齡而衰老,我們是因放棄我們的理想而衰老。年齡會使皮膚老化,而放棄熱情卻會使靈魂老化。――[撒母耳·厄爾曼]108.快樂和智能的區(qū)別在于:自認最快樂的人實際上就是最快樂的,但自認為最明智的人一般而言卻是最愚蠢的。――[卡雷貝·C·科爾頓]109.每個人皆有連自己都不清楚的潛在能力。無論是誰,在千鈞一發(fā)之際,往往能輕易解決從前認為極不可能解決的事。――[戴爾·卡內(nèi)基]110.每天安靜地坐十五分鐘·傾聽你的氣息,感覺它,感覺你自己,并且試著什么都不想。――[艾瑞克·佛洛姆]111.你知道何謂沮喪---就是你用一輩子工夫,在公司或任何領(lǐng)域里往上攀爬,卻在抵達最高處的同時,發(fā)現(xiàn)自己爬錯了墻頭。--[坎伯]112.「偉大」這個名詞未必非出現(xiàn)在規(guī)模很大的事情不可;生活中微小之處,照樣可以偉大。――[布魯克斯]11
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 診所無菌操作制度
- 警務(wù)室五個制度
- 2026西安未央湖社區(qū)衛(wèi)生服務(wù)中心招聘參考考試試題附答案解析
- 2026上半年云南事業(yè)單位聯(lián)考能源職業(yè)技術(shù)學院招聘21人備考考試試題附答案解析
- 2026北京協(xié)和醫(yī)院婦科內(nèi)分泌與生殖中心合同制科研助理招聘參考考試題庫附答案解析
- 2026貴州貴陽市息烽縣衛(wèi)生健康局公益性崗位招聘2人備考考試試題附答案解析
- 2026山東濟寧曲阜市事業(yè)單位公開招聘初級綜合類崗位人員備考考試題庫附答案解析
- 2026年楚雄州武定縣公安局特巡警大隊招聘輔警(2人)備考考試題庫附答案解析
- 2026貴州遵義清華中學教師招聘4人備考考試題庫附答案解析
- 2026年杭州市富陽區(qū)春建鄉(xiāng)人民政府網(wǎng)格隊伍招聘1人備考考試試題附答案解析
- 2026中國國際航空招聘面試題及答案
- (2025年)工會考試附有答案
- 2026年國家電投集團貴州金元股份有限公司招聘備考題庫完整參考答案詳解
- 復工復產(chǎn)安全知識試題及答案
- 中燃魯西經(jīng)管集團招聘筆試題庫2026
- 資產(chǎn)接收協(xié)議書模板
- 數(shù)據(jù)中心合作運營方案
- 印鐵涂料基礎(chǔ)知識
- 工資欠款還款協(xié)議書
- 石籠網(wǎng)廠施工技術(shù)交底
- 新建粉煤灰填埋場施工方案
評論
0/150
提交評論