2023年內(nèi)蒙古自治區(qū)烏蘭察布市集寧一中高考全國統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷(含答案解析)_第1頁
2023年內(nèi)蒙古自治區(qū)烏蘭察布市集寧一中高考全國統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷(含答案解析)_第2頁
2023年內(nèi)蒙古自治區(qū)烏蘭察布市集寧一中高考全國統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷(含答案解析)_第3頁
免費(fèi)預(yù)覽已結(jié)束,剩余18頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i2.設(shè)α,β為兩個(gè)平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面3.已知向量,,若,則與夾角的余弦值為()A. B. C. D.4.在中,,則=()A. B.C. D.5.已知點(diǎn)P不在直線l、m上,則“過點(diǎn)P可以作無數(shù)個(gè)平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知向量與的夾角為,定義為與的“向量積”,且是一個(gè)向量,它的長(zhǎng)度,若,,則()A. B.C.6 D.7.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,則的最小值為()A. B. C. D.8.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣29.已知正方體的棱長(zhǎng)為2,點(diǎn)在線段上,且,平面經(jīng)過點(diǎn),則正方體被平面截得的截面面積為()A. B. C. D.10.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.11.等比數(shù)列若則()A.±6 B.6 C.-6 D.12.已知,是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于,兩點(diǎn),若,則△的內(nèi)切圓的半徑為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)函數(shù),則不等式的解集為____.14.利用等面積法可以推導(dǎo)出在邊長(zhǎng)為a的正三角形內(nèi)任意一點(diǎn)到三邊的距離之和為定值,類比上述結(jié)論,利用等體積法進(jìn)行推導(dǎo),在棱長(zhǎng)為a的正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和也為定值,則這個(gè)定值是______15.若,則____.16.《易經(jīng)》是中國傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點(diǎn),軸非負(fù)半軸為極軸的極坐標(biāo)系中,求曲線的普通方程;(2)若點(diǎn),為曲線上兩動(dòng)點(diǎn),且滿足,求面積的最大值.18.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng),若不存在,請(qǐng)說明理由.19.(12分)對(duì)于很多人來說,提前消費(fèi)的認(rèn)識(shí)首先是源于信用卡,在那個(gè)工資不高的年代,信用卡絕對(duì)是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風(fēng)靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風(fēng)來”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了100人進(jìn)行抽樣分析,得到如下列聯(lián)表(單位:人)經(jīng)常使用信用卡偶爾或不用信用卡合計(jì)40歲及以下15355040歲以上203050合計(jì)3565100(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān)?(2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進(jìn)行分層抽樣抽取10人,然后,再從這10人中隨機(jī)選出4人贈(zèng)送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機(jī)抽取3人贈(zèng)送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機(jī)變量的分布列、數(shù)學(xué)期望和方差.參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0102.0722.7063.8415.0246.63520.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)把曲線向下平移個(gè)單位,然后各點(diǎn)橫坐標(biāo)變?yōu)樵瓉淼谋兜玫角€(縱坐標(biāo)不變),設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.21.(12分)已知等腰梯形中(如圖1),,,為線段的中點(diǎn),、為線段上的點(diǎn),,現(xiàn)將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.22.(10分)已知函數(shù),.(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;(2)若,當(dāng)時(shí),函數(shù),求函數(shù)的最小值.

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【答案解析】

利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出【題目詳解】,則復(fù)數(shù)z的虛部為.故選:B.【答案點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.2.B【答案解析】

本題考查了空間兩個(gè)平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【題目詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【答案點(diǎn)睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯(cuò)誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯(cuò)誤.3.B【答案解析】

直接利用向量的坐標(biāo)運(yùn)算得到向量的坐標(biāo),利用求得參數(shù)m,再用計(jì)算即可.【題目詳解】依題意,,而,即,解得,則.故選:B.【答案點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算、向量數(shù)量積的應(yīng)用,考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想.4.B【答案解析】

在上分別取點(diǎn),使得,可知為平行四邊形,從而可得到,即可得到答案.【題目詳解】如下圖,,在上分別取點(diǎn),使得,則為平行四邊形,故,故答案為B.【答案點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,考查了學(xué)生邏輯推理能力,屬于基礎(chǔ)題.5.C【答案解析】

根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【題目詳解】點(diǎn)不在直線、上,若直線、互相平行,則過點(diǎn)可以作無數(shù)個(gè)平面,使得直線、都與這些平面平行,即必要性成立,若過點(diǎn)可以作無數(shù)個(gè)平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點(diǎn)只能作一個(gè)平面同時(shí)和兩條直線平行,則與條件矛盾,即充分性成立則“過點(diǎn)可以作無數(shù)個(gè)平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【答案點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關(guān)鍵.6.D【答案解析】

先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【題目詳解】由題意,則,,得,由定義知,故選:D.【答案點(diǎn)睛】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡(jiǎn)單題目.7.D【答案解析】

由,可求出等比數(shù)列的通項(xiàng)公式,進(jìn)而可知當(dāng)時(shí),;當(dāng)時(shí),,從而可知的最小值為,求解即可.【題目詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時(shí),;當(dāng)時(shí),,則的最小值為.故選:D.【答案點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于中檔題.8.D【答案解析】

化簡(jiǎn)z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【題目詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【答案點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.9.B【答案解析】

先根據(jù)平面的基本性質(zhì)確定平面,然后利用面面平行的性質(zhì)定理,得到截面的形狀再求解.【題目詳解】如圖所示:確定一個(gè)平面,因?yàn)槠矫嫫矫?,所以,同理,所以四邊形是平行四邊?即正方體被平面截的截面.因?yàn)?,所以,即所以由余弦定理得:所以所以四邊形故選:B【答案點(diǎn)睛】本題主要考查平面的基本性質(zhì),面面平行的性質(zhì)定理及截面面積的求法,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.10.C【答案解析】

由每個(gè)函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【題目詳解】因?yàn)楹瘮?shù)和在遞增,而在遞減.故選:C【答案點(diǎn)睛】本題主要考查常見簡(jiǎn)單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.11.B【答案解析】

根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【題目詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號(hào)相同,所以,故選:B.【答案點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡(jiǎn)單應(yīng)用,注意項(xiàng)的符號(hào)特征,屬于基礎(chǔ)題.12.B【答案解析】

設(shè)左焦點(diǎn)的坐標(biāo),由AB的弦長(zhǎng)可得a的值,進(jìn)而可得雙曲線的方程,及左右焦點(diǎn)的坐標(biāo),進(jìn)而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個(gè)三角形的面積之和可得內(nèi)切圓的半徑.【題目詳解】由雙曲線的方程可設(shè)左焦點(diǎn),由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長(zhǎng)為設(shè)內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【答案點(diǎn)睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長(zhǎng)周長(zhǎng)的一半之積等于三角形的面積可得半徑的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】,,所以,所以的解集為。點(diǎn)睛:本題考查絕對(duì)值不等式。本題先對(duì)絕對(duì)值函數(shù)進(jìn)行分段處理,再得到的解析式,求得的分段函數(shù)解析式,再解不等式即可。絕對(duì)值函數(shù)一般都去絕對(duì)值轉(zhuǎn)化為分段函數(shù)處理。14.【答案解析】

計(jì)算正四面體的高,并計(jì)算該正四面體的體積,利用等體積法,可得結(jié)果.【題目詳解】作平面,為的重心如圖則,所以設(shè)正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和為則故答案為:【答案點(diǎn)睛】本題考查類比推理的應(yīng)用,還考查等體積法,考驗(yàn)理解能力以及計(jì)算能力,屬基礎(chǔ)題.15.【答案解析】

由,得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡(jiǎn),再利用齊次式即可求出結(jié)果.【題目詳解】因?yàn)?,所以,所?故答案為:.【答案點(diǎn)睛】本題考查三角函數(shù)化簡(jiǎn)求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運(yùn)用齊次式求值,屬于對(duì)公式的考查以及對(duì)計(jì)算能力的考查.16.【答案解析】

觀察八卦中陰線和陽線的情況為3線全為陽線或全為陰線各一個(gè),還有6個(gè)是1陰2陽和1陽2陰各3個(gè)。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰。【題目詳解】八卦中陰線和陽線的情況為3線全為陽線的一個(gè),全為陰線的一個(gè),1陰2陽的3個(gè),1陽2陰的3個(gè)。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰。∴從8個(gè)卦中任取2卦,共有種可能,兩卦中共2陽4陰的情況有,所求概率為。故答案為:。【答案點(diǎn)睛】本題考查古典概型,解題關(guān)鍵是確定基本事件的個(gè)數(shù)。本題不能受八卦影響,我們關(guān)心的是八卦中陰線和陽線的條數(shù),這樣才能正確地確定基本事件的個(gè)數(shù)。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【答案解析】

(1)消去參數(shù),將圓的參數(shù)方程,轉(zhuǎn)化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標(biāo)方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達(dá)式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【題目詳解】(1)由題意得:,:因?yàn)榍€和相切,所以,即:;(2)設(shè),所以所以當(dāng)時(shí),面積最大值為【答案點(diǎn)睛】本小題主要考查參數(shù)方程轉(zhuǎn)化為普通方程,考查直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程,考查利用參數(shù)的方法求三角形面積的最值,屬于中檔題.18.(1)見解析;(2)存在,長(zhǎng)【答案解析】

(1)先證面,又因?yàn)槊?所以平面平面.(2)根據(jù)題意建立空間直角坐標(biāo)系.列出各點(diǎn)的坐標(biāo)表示,設(shè),則可得出向量,求出平面的法向量為,利用直線與平面所成角的正弦公式列方程求出或,從而求出線段的長(zhǎng).【題目詳解】解:(1)證明:因?yàn)樗倪呅螢榫匦?∴.∵∴∴∴面∴面又∵面∴平面平面(2)取為原點(diǎn),所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系.如圖所示:則,,,,,設(shè),;∴,,設(shè)平面的法向量為,∴,不防設(shè).∴,化簡(jiǎn)得,解得或;當(dāng)時(shí),,∴;當(dāng)時(shí),,∴;綜上存在這樣的點(diǎn),線段的長(zhǎng).【答案點(diǎn)睛】本題考查平面與平面垂直的判定定理的應(yīng)用,考查利用線面所成角求參數(shù)問題,是幾何綜合題,考查空間想象力以及計(jì)算能力.19.(1)不能在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān);(2)①;②分布列見解析,,【答案解析】

(1)計(jì)算再對(duì)照表格分析即可.(2)①根據(jù)分層抽樣的方法可得經(jīng)常使用信用卡的有人,偶爾或不用信用卡的有人,再根據(jù)超幾何分布的方法計(jì)算3人或4人偶爾或不用信用卡的概率即可.②利用二項(xiàng)分布的特點(diǎn)求解變量的分布列、數(shù)學(xué)期望和方差即可.【題目詳解】(1)由列聯(lián)表可知,,因?yàn)?所以不能在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān).(2)①依題意,可知所抽取的10名40歲及以下網(wǎng)民中,經(jīng)常使用信用卡的有(人),偶爾或不用信用卡的有(人).則選出的4人中至少有3人偶爾或不用信用卡的概率.②由列聯(lián)表,可知40歲以上的網(wǎng)民中,抽到經(jīng)常使用信用卡的頻率為,將頻率視為概率,即從市市民中任意抽取1人,恰好抽到經(jīng)常使用信用卡的市民的概率為.由題意得,則,,,.故隨機(jī)變量的分布列為:0123故隨機(jī)變量的數(shù)學(xué)期望為,方差為.【答案點(diǎn)睛】本題主要考查了獨(dú)立性檢驗(yàn)以及超幾何分布與二項(xiàng)分布的知識(shí)點(diǎn),包括分類討論以及二項(xiàng)分布的數(shù)學(xué)期望與方差公式等.屬于中檔題.20.(1),;(2).【答案解析】

(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程兩邊同時(shí)乘以得,進(jìn)而可化簡(jiǎn)得出曲線的直角坐標(biāo)方程;(2)根據(jù)變換得出的普通方程為,可設(shè)點(diǎn)的坐標(biāo)為,利用點(diǎn)到直線的距離公式結(jié)合正弦函數(shù)的有界性可得出結(jié)果.【題目詳解】(1)由(為參數(shù)),得,化簡(jiǎn)得,故直線的普通方程為.由,得,又,,.所以的直角坐標(biāo)方程為;(2)由(1)得曲線的直角坐標(biāo)方程為,向下平移個(gè)單位得到,縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋兜玫角€的方程為,所以曲線的參數(shù)方程為(為參數(shù)).故點(diǎn)到直線的距離為,當(dāng)時(shí),最小為.【答案點(diǎn)睛】本題考查曲線的參數(shù)方程、極坐標(biāo)方程與普通方程的相互轉(zhuǎn)化,同時(shí)也考查了利用橢圓的參數(shù)方程解決點(diǎn)到直線的距離最值的求解,考查計(jì)算能力,屬于中等題.21.(1)見解析;(2).【答案解析】

(1)先連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)在圖2中,過點(diǎn)作,垂足為,連接,,證明平面平面,得到點(diǎn)在底面上的投影必落在直線上,記為點(diǎn)在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結(jié)果.【題目詳解】(1)連接,因?yàn)榈妊菪沃校ㄈ鐖D1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點(diǎn),為中點(diǎn),易得:四邊形也為平行四邊形,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論