版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
SynchronousMachines-ReactanceandExcitationCalculationMarkFanslowTecoWestinghouseEngineeringTrainingNov.2005SynchronousMachines-Reactan1StatorRevolvingMagneticFieldMagneticPolePairsrotateatSynchronousSpeedThreePhaseACVoltageStatorRevolvingMagneticFiel2SynchronousRotorDCinputtotherotorcreateselectromagneticpolespairsPolesofdifferentpolarityarecreatedbywindingaroundthepoleindifferentdirectionsSynchronousRotorDCinputtot3SynchronousMotorRotor“Locked”intopowersupply,rovlovesatsynchronousspeedSynchronousMotorRotor“Locked4PhasorsandPhasorDiagramsTheconceptofPhasorsisrelatedtosinusoidalwaveformsthataredistributedinspaceandvarywithtime.Phasorsarecomplex(asincomplexnumbers)quantitiesusedforsimplifiedcalculationoftimevaryingandtravelingwaveforms.Themagnitudeandphaserelationshipbetweenthevectorsandcanbeshownsimplyinphasordiagrams.PhasorsandPhasorDiagramsThe5PhasorDiagramExampleConsiderthesimpleRL(resistiveinductive)circuitV=Vmsin(ωt)Voltagefunctionoftime.CurrentfunctionoftimeanddisplacedbyangleVILMagneticFluxinInductor90°outofphasewithvoltagewaveformi90°PhasorDiagramExampleConsider6PhasorDiagramCont.VIFLФLRecall:
B:MagneticFluxDensitydenoteФ
H:MagneticFluxIntensityormmfdenoteFo:Constantofpermeabilityoffreespacer:Constantofpermeabilityofelectricalsteel
PhasorDiagramCont.VIFLФLRec7CylindricalRotorSynchronousMachine:Duetotheevenairgap,theformulationsforbasicmachinequantitiesissimplified.Wewillconsiderthecylindricalmachinetheoryfirstandthenextendtheanalysistothesalientpolecase.CylindricalRotorSynchronous8AxisofFieldAxisofPhaseA90°lagArmaturecurrentmmfFarResultantmmfFrFieldmmfFfRotorRotationStatorRotorNSStatorI.D.RotorO.D.AxisofFieldAxisofPhaseA909IaVtIaraEintEaΦar-ΦarfΦfRjIaxAjIax1Φr-ararErIaVtIaraEintEaΦar-ΦarfΦfRjI10CylindricalRotorPhasorDiagramForSynchronousGeneratorVt: TerminalVoltageIa: StatorCurrentLagsterminalVoltagebyAngleEa: AirGapVoltage,thevoltageinducedintothearmaturebythe fieldvoltageactingalone,the“opencircuit”voltageEr: ReactivevoltageproducedbyarmaturefluxEint: ResultantVoltageintheAirGapar: FluxfromArmaturecurrent(ArmatureReaction)f: Fluxduetofieldcurrentr: Resultantfluxar+fFf: mmfofFieldAar: mmfofArmatureCurrent(ArmatureReaction)FR: Resultantmmf,thesumofF+AIara: Voltagedropofarmatureresistance Iaxl: ReactivevoltagedropofArmatureleakagereactanceIaxA: ReactivevoltagedropofreactanceofArmaturereactionCylindricalRotorPhasorDiagr11FromthediagramitisevidentthatEr,thevoltageinducedinthestatorbytheeffectofthearmaturereactionflux,isinphasewithIaXl.ThesummationofErandIaXlgivesthetotalreactivevoltageproducedinthearmaturecircuitbythearmatureflux.TheratioofthistotalvoltagetoarmaturecurrentisdefinedasXsorthesynchronousreactance.Fromthediagramitisevident12SalientPoleSynchronousMachinesSalientPoleSynchronousMachi13SalientPoleSynchronousMachineSalientPoleSynchronousMachi14TwoReactionTheoryOneoftheconceptsusedincylindricalrotortheorywasthesummationofbothfluxandmmfwaveforms.r=f+arandFr=Ff+FarThisisallowedsince
B=orHandthemagneticpermeabilityoftheairgapisconstantaroundtherotorHoweverforsalientpolemachines,thepermeabilityofthefluxpathvariessignificantlyastheratioofairgaptosteelchanges.Thereforerf+ar
TwoReactionTheoryOneofthe15SalientPoleSynchronousMachineWithasalientpolemachine,asinusoidaldistributionoffluxcannotbeassumedintheairgapduetothevariationinmagneticpermeancealongtheairgap.However,owingtothesymmetryofasalientpolemachinealongthedirectandquadratureaxis,asinusoidaldistributionofmmfcanbeassumedalongeachaxis.BreakthemmfofthearmaturecurrentAarintotwocomponents,AdandAq.AdisthecomponentofAarthatworksalongthedirectaxisandAqisthecomponentofAarcenteredonthequadratureaxis.SalientPoleSynchronousMachi16TwoReactionTheory:IntroductionIfyouacceptthatAarcanbebrokenintotwocomponentsAdandAq,itfollowsthatforeachmmfwaveform,aemfwaveformexists90degreesoutofphasewithit.SoAdhasanassociatedEd,andAqhasanassociatedEq.ThesevoltagedropscanbethoughofhasbeingcreatedbyafictitiousreactancedropEd=XadIdandEq=XaqIq
,whereId: DirectaxiscomponentofarmaturecurrentIq:QuadratureaxiscomponentofarmaturecurrentXad:DirectaxisarmaturereactionreactanceXaq:QuadratureaxisarmaturereactionreactanceTwoReactionTheory:Introduct17IaVtIaraEintEaΦarθjIaxAAjIax1IdxldIqxlqIdxAdIqxAqForCylindricalRotor:Ia2=Id2+Iq2Xld=XlqXAd=XAqIaVtIaraEintEaΦarθjIaxAAjIax1I18TwoReactionDiagramSinceforaCylindricalRotor:Ia2=Id2+Iq2and(IaXs)2=(IdXd)2+(IqXq)2Xld=XlqXAd=XAqXs=Xd=XqItisnotnecessarytousetworeactiontheorytodescribethequantitiesofacylindricalrotormachine.TwoReactionDiagramSincefor19EaIqIaIdΦfΦrΦaqΦadΦarPhasorDiagramofaSalientPoleSynchronousGeneratorEaIqIaIdΦfΦrΦaqΦadΦarPhasorDi20IaVtIdEintIqK1EintIdxadIqxaqEaIaraIaxlIa:StatorcurrentVt:StatorterminalVoltageIra:VoltageofstatorresistanceIxl:VoltageofstatorleakagereactanceEint:InternalairgapvoltageK1Eint:Extrammfrequiredtoovercomestatorsaturation,K1issaturationfactorIdxad:reactivevoltagedropdirectaxisIdxaq:ReactivevoltagedropquadratureaxisEa:Totalsumofdirectaxisvoltage,airgap voltage,opencircuitvoltage?εδId=Iasin(+δ)Iq=Iasin(+δ)IaVtIdEintIqK1EintIdxadIqxaqE21PoleFaceDesign-MagneticFieldsThemmfwaveofarmaturereactionandthemmfwaveofthepolearecreatedontwodifferentsidesoftheairgapbutmustbecombinedtodeterminearesultantmmf.Todothiswemustdetermineconversionfactorstoconvertanstatorsidemmftoandequivalentrotorsidemmf.90°lagArmaturecurrentmmfFarResultantmmfFrFieldmmfFfRotorRotationStatorRotorNSPoleFaceDesign-MagneticFi22PoleFaceDesign–MagneticFieldsC1:Ifpeakofthefundamentalisunity,thenC1ispeakofacutalwaveform.NotethatWiesemancallsthisA1No-Load:motorisexcitedbythefieldwindingonlyPoleFaceDesign–MagneticFi23PoleFaceDesign–MagneticFieldCd1:Ifpeakofthefundamentalisunity,thenCd1ispeakofacutalwaveform.NotethatWiesemancallsthisAd1ArmaturemmfSinewavewhoseaxiscoincideswiththepolecenterPoleFaceDesign–MagneticFi24PoleFaceDesign–MagneticFieldCq1:Ifpeakofthefundamentalisunity,thenCq1ispeakofacutalwaveform.NotethatWiesemancallsthisAq1ArmaturemmfSinewavewhoseaxiscoincideswiththegapbetweenpolesPoleFaceDesign–MagneticFi25ListofPoleConstantsCd1–RatioofthefundamentaloftheairgapfluxproducedbythedirectaxisarmaturecurrenttothatwhichwouldbeproducedwithauniformgapequaltotheeffectivegapatthepolecenterCq1–RatioofthefundamentaloftheairgapfluxproducedbythequadratureaxisarmaturecurrenttothatwhichwouldbeproducedwithauniformgapequaltotheeffectivegapatthepolecenterC1–Theratioofthefundamentaltotheactualmaximumvalueofthefieldformwhenexcitedbythefieldonly(no-load)Cm–Ratiooffundamentalairgapfluxproducedbythefundamentalofarmaturemmftothatproducedbythefieldforthesamemaximummmf.Thisisthearmaturereactionconversionfactorforthedirectaxis.Cm=Cd1/C1K–Fluxdistributioncoefficient;theratiooftheareaoftheactualnoloadfluxwavetotheareaofitsfundamentalListofPoleConstantsCd1–R26PoleConstantsWhatfollowsaregraphsthatrelatethephysicalgeometryofthepoletothepoleconstants.ThesegraphscanbefoundintheappendixofEngineeringNote106.Thegraphsintheengineeringnoteareidenticaltographsthatfirstappearedina1927AIEEpapertitledGraphicalDeterminationofMagneticFieldsbyRobertWieseman.PoleConstantsWhatfollowsare27PoleConstantsWiesemanusedhandplottingtechniquestoplotthefluxfieldsofseveralhundredsofpoleshapestocomeupwiththegraphs.Duetotheintensivenatureofthework,thegraphsareplottedforalimitedrangeofpolegeometry:Polearc/Polepitch=0.5to.75 Gmax/Gmin=1.0to3.0 Minimumgap/polepitch=.005to.05 SincethesecurvesareusedbySMDStocalculatemotorperformance,SMDSwillnotrunwithanyoneofthesethreevariablesoutsideofthegivenrange.Thereisnoreason,besidesthelimitationsoftheoriginalcurves,whyvariablesoutsidetherangeslistedabovecouldn’tbeused.PoleConstantsWiesemanusedha28PoleFaceDesign–MagneticFieldsDeterminationofKPoleFaceDesign–MagneticFi29PoleFaceDesign–MagneticFieldsDeterminationofC1PoleFaceDesign–MagneticFi30PoleFaceDesign–MagneticFieldsDeterminationofCq1PoleFaceDesign–MagneticFi31PoleFaceDesign–MagneticFieldsDeterminationofCd1PoleFaceDesign–MagneticFi32PoleFaceDesign–MagneticFieldsPolefacedesignscomeintwoflavors,singleradiusanddoubleradius.Thereasonforthisistheshapeofthepoleheadrelativetothestatorboreradiushasalargeinfluenceoftheshapeofthefieldfluxwaveform.PoleFaceDesign–MagneticFi33ReactanceCalculationsXad=ReactanceofarmaturereactiondirectedalongthedirectaxisXaq=ReactanceofarmaturereactiondirectedalongthequadratureaxisT=CommonReactanceFactora=PermeanceFactorCd1=PoleConstantCq1=PoleConstantReactanceCalculationsXad=Re34T=CommonReactanceFactorm=#phasesL=StatorCoreLengthf=frequencyZ=SeriesConductorsperPhaseKw=WindingfactorStatorP=#PolesReactanceCalculationsT=CommonReactanceFactorRea35a=PermeanceFactorD=DiameterofStatorBoreP=#PolesKg=Carter’sGapCoefficeintgmin=MinimumairgapatcenterofpoleReactanceCalculationsa=PermeanceFactorReactance36ArmatureLeakageReactanceisdeterminedusingamethodologyidenticaltotheinductionmachine.SynchronousReactancesXd=Xl+XadXq=Xl+XaqArmatureLeakageReactanceis37ExcitationCalculations1.CalculatetotalMagneticFlux2.ConvertarmaturemagneticFluxtoFieldEquivalent3.CalculateEintbyaddingarmatureresistanceandleakagereactancedropstoterminalvoltage.4.Usingstep2,calculatetheamphereturnsrequiredtomagnitizetheairgap.5.UsingstepEintfromstep3andelectricalsteelmagnitizationcurvescalculatetheampereturnsrequiredtomagnitzethestatorcoreandairgap.6.Usingtheresultsof4and5calculatethesaturationfactor.7.Usingtheresultsof3and5calculatethedirectaxiscomponentofmmf.8.Calculatethedirectaxiscomponentofarmaturereaction9.Usingtheresultsof6and7calculatethemmfrequirementsatthepoleface10.Calculatethepolesaturationmmf11.Totaldirectaxisexcitationisthesumof8and9ExcitationCalculations1.Cal38ExcitationCalculationsStepOne:TotalfundamentalfluxperpoleEph: PhasevoltageatstatorterminalsKp: PitchFactorKd: DistributionFactorFreq: FrequencyNSPC: ArmatureseriesturnsperphasepercircuitExcitationCalculationsStepOn39ExcitationCalculation Step2:CalculatetotalfluxperpoleonopencircuitKrelatesfundamentalfluxperpoletototalfluxperpoleusingfactors.ExcitationCalculation Step240ExcitationCalculationCont.Step3:Calculatetotalairgapfluxperpoleatthespecificvoltageandloadofinterest.ThisvoltagewasshownonthepreviousphasordiagramasEint.Step3a:CalculatethestatorleakagereactanceusingsameformulasderivedfortheInductionmotorstator.ExcitationCalculationCont.St41FieldExcitationCont.PortionofthepreviousphasordiagramisredrawnFromdiagramitisevidentthat:IaxlIaraIaVtIdEintIqFieldExcitationCont.Portion42IaVtEintIqK1EintIdxadIqxaqIaxaqIaraIaxlαεδIdK1Eintsin(α)IaVtEintIqK1EintIdxadIqxaqIax43FieldExcitationCont.Step4:Calculatetheampereturnsneededtomagnetizetheairgapatratedvoltage:Fg.Samegapfactorusedfrominductionmotortheory(i.e.Carter’scoefficient)FieldExcitationCont.Step4:44FieldExcitationCont.Step5:Calculatethestatorcore+statorteethampereturnsatthevalueoffluxcorrespondingtoEint.Ac:AreaofstatorcoreAt:AreaofstatorteethBCmax:maximumvalueoffluxdensityinstatorcoreBTmax:maximumvalueoffluxdensityinstatorteethFieldExcitationCont.Step5:45FieldExcitationCont.UsingB-Hcurvesformagneticsteelusedforstatorlaminations,readoffavalueofmmfinamphereturnsforthevalueofBCmaxandBTmaxcalculatedinprevioussteps.Makesureunitsmatch.FieldExcitationCont.UsingB-46FieldExcitationCont. Step6:CalculatethecomponentmmfinthedirectaxiscorrespondingtoK1eintStep6a:CalculatesaturationfactorK1fromB-Hcurveforelectricalsteel.Statormmf:ActualvalueofampereturnscorrespondingtoEintvalueoffluxfromstep5.FgEint:ValueofmmfthatwouldresultbyextendingthestraitportionofB-Hcurve.Fgwascalculatedinstep4.FieldExcitationCont. Step6:47mmfeintmmfeint48FieldExcitationCont.Step7:K1eld=K1Eintcos?K1eld:Componentofmmfinthedirectaxis correspondingtoK1EintK1:SaturationFactorfromstep6Eint:Voltage
intheairgapfromstep4?:AnglebetweenFieldExcitationVoltageand Eint.:
?=
-FieldExcitationCont.Step7:49FieldExcitationCont.Step8:Calculatethedirectaxiscomponentofarmaturereaction:IdxadXadcalculatedinreactancesectionId=Iasin(ε)FieldExcitationCont.Step8:50FieldExcitationCont.Step9:Addingtheresultsfromstep7andstep6,yougetthemmfrequirementsatthepolefaceFPF.FPF=K1Eintcos(?)+IdxadTheunitsofFPFareampereturns.FieldExcitationCont.Step9:51FieldExcitationCont.Step10:Calculatethepolesaturationmmf.Usingtheresultsofthenextlecture,calculatethepoleleakagefactorKLTherotorfluxperpoleisthenKLxEintxFReadthevalueofmmfperpolefromthepolesteelB-HCurve.FieldExcitationCont.Step10:52FieldExcitationFinishThetotalexcitationrequiredalongthedirectaxisisthesumofsteps9and10.Theresultisinunitsofampere-turns.Dividetheampere-turnsbythenumberofturnsperpoletoarriveatFullLoadFieldAmps.FieldExcitationFinishThetot53THEEND Questions?THEEND Questions?54SynchronousMachines-ReactanceandExcitationCalculationMarkFanslowTecoWestinghouseEngineeringTrainingNov.2005SynchronousMachines-Reactan55StatorRevolvingMagneticFieldMagneticPolePairsrotateatSynchronousSpeedThreePhaseACVoltageStatorRevolvingMagneticFiel56SynchronousRotorDCinputtotherotorcreateselectromagneticpolespairsPolesofdifferentpolarityarecreatedbywindingaroundthepoleindifferentdirectionsSynchronousRotorDCinputtot57SynchronousMotorRotor“Locked”intopowersupply,rovlovesatsynchronousspeedSynchronousMotorRotor“Locked58PhasorsandPhasorDiagramsTheconceptofPhasorsisrelatedtosinusoidalwaveformsthataredistributedinspaceandvarywithtime.Phasorsarecomplex(asincomplexnumbers)quantitiesusedforsimplifiedcalculationoftimevaryingandtravelingwaveforms.Themagnitudeandphaserelationshipbetweenthevectorsandcanbeshownsimplyinphasordiagrams.PhasorsandPhasorDiagramsThe59PhasorDiagramExampleConsiderthesimpleRL(resistiveinductive)circuitV=Vmsin(ωt)Voltagefunctionoftime.CurrentfunctionoftimeanddisplacedbyangleVILMagneticFluxinInductor90°outofphasewithvoltagewaveformi90°PhasorDiagramExampleConsider60PhasorDiagramCont.VIFLФLRecall:
B:MagneticFluxDensitydenoteФ
H:MagneticFluxIntensityormmfdenoteFo:Constantofpermeabilityoffreespacer:Constantofpermeabilityofelectricalsteel
PhasorDiagramCont.VIFLФLRec61CylindricalRotorSynchronousMachine:Duetotheevenairgap,theformulationsforbasicmachinequantitiesissimplified.Wewillconsiderthecylindricalmachinetheoryfirstandthenextendtheanalysistothesalientpolecase.CylindricalRotorSynchronous62AxisofFieldAxisofPhaseA90°lagArmaturecurrentmmfFarResultantmmfFrFieldmmfFfRotorRotationStatorRotorNSStatorI.D.RotorO.D.AxisofFieldAxisofPhaseA9063IaVtIaraEintEaΦar-ΦarfΦfRjIaxAjIax1Φr-ararErIaVtIaraEintEaΦar-ΦarfΦfRjI64CylindricalRotorPhasorDiagramForSynchronousGeneratorVt: TerminalVoltageIa: StatorCurrentLagsterminalVoltagebyAngleEa: AirGapVoltage,thevoltageinducedintothearmaturebythe fieldvoltageactingalone,the“opencircuit”voltageEr: ReactivevoltageproducedbyarmaturefluxEint: ResultantVoltageintheAirGapar: FluxfromArmaturecurrent(ArmatureReaction)f: Fluxduetofieldcurrentr: Resultantfluxar+fFf: mmfofFieldAar: mmfofArmatureCurrent(ArmatureReaction)FR: Resultantmmf,thesumofF+AIara: Voltagedropofarmatureresistance Iaxl: ReactivevoltagedropofArmatureleakagereactanceIaxA: ReactivevoltagedropofreactanceofArmaturereactionCylindricalRotorPhasorDiagr65FromthediagramitisevidentthatEr,thevoltageinducedinthestatorbytheeffectofthearmaturereactionflux,isinphasewithIaXl.ThesummationofErandIaXlgivesthetotalreactivevoltageproducedinthearmaturecircuitbythearmatureflux.TheratioofthistotalvoltagetoarmaturecurrentisdefinedasXsorthesynchronousreactance.Fromthediagramitisevident66SalientPoleSynchronousMachinesSalientPoleSynchronousMachi67SalientPoleSynchronousMachineSalientPoleSynchronousMachi68TwoReactionTheoryOneoftheconceptsusedincylindricalrotortheorywasthesummationofbothfluxandmmfwaveforms.r=f+arandFr=Ff+FarThisisallowedsince
B=orHandthemagneticpermeabilityoftheairgapisconstantaroundtherotorHoweverforsalientpolemachines,thepermeabilityofthefluxpathvariessignificantlyastheratioofairgaptosteelchanges.Thereforerf+ar
TwoReactionTheoryOneofthe69SalientPoleSynchronousMachineWithasalientpolemachine,asinusoidaldistributionoffluxcannotbeassumedintheairgapduetothevariationinmagneticpermeancealongtheairgap.However,owingtothesymmetryofasalientpolemachinealongthedirectandquadratureaxis,asinusoidaldistributionofmmfcanbeassumedalongeachaxis.BreakthemmfofthearmaturecurrentAarintotwocomponents,AdandAq.AdisthecomponentofAarthatworksalongthedirectaxisandAqisthecomponentofAarcenteredonthequadratureaxis.SalientPoleSynchronousMachi70TwoReactionTheory:IntroductionIfyouacceptthatAarcanbebrokenintotwocomponentsAdandAq,itfollowsthatforeachmmfwaveform,aemfwaveformexists90degreesoutofphasewithit.SoAdhasanassociatedEd,andAqhasanassociatedEq.ThesevoltagedropscanbethoughofhasbeingcreatedbyafictitiousreactancedropEd=XadIdandEq=XaqIq
,whereId: DirectaxiscomponentofarmaturecurrentIq:QuadratureaxiscomponentofarmaturecurrentXad:DirectaxisarmaturereactionreactanceXaq:QuadratureaxisarmaturereactionreactanceTwoReactionTheory:Introduct71IaVtIaraEintEaΦarθjIaxAAjIax1IdxldIqxlqIdxAdIqxAqForCylindricalRotor:Ia2=Id2+Iq2Xld=XlqXAd=XAqIaVtIaraEintEaΦarθjIaxAAjIax1I72TwoReactionDiagramSinceforaCylindricalRotor:Ia2=Id2+Iq2and(IaXs)2=(IdXd)2+(IqXq)2Xld=XlqXAd=XAqXs=Xd=XqItisnotnecessarytousetworeactiontheorytodescribethequantitiesofacylindricalrotormachine.TwoReactionDiagramSincefor73EaIqIaIdΦfΦrΦaqΦadΦarPhasorDiagramofaSalientPoleSynchronousGeneratorEaIqIaIdΦfΦrΦaqΦadΦarPhasorDi74IaVtIdEintIqK1EintIdxadIqxaqEaIaraIaxlIa:StatorcurrentVt:StatorterminalVoltageIra:VoltageofstatorresistanceIxl:VoltageofstatorleakagereactanceEint:InternalairgapvoltageK1Eint:Extrammfrequiredtoovercomestatorsaturation,K1issaturationfactorIdxad:reactivevoltagedropdirectaxisIdxaq:ReactivevoltagedropquadratureaxisEa:Totalsumofdirectaxisvoltage,airgap voltage,opencircuitvoltage?εδId=Iasin(+δ)Iq=Iasin(+δ)IaVtIdEintIqK1EintIdxadIqxaqE75PoleFaceDesign-MagneticFieldsThemmfwaveofarmaturereactionandthemmfwaveofthepolearecreatedontwodifferentsidesoftheairgapbutmustbecombinedtodeterminearesultantmmf.Todothiswemustdetermineconversionfactorstoconvertanstatorsidemmftoandequivalentrotorsidemmf.90°lagArmaturecurrentmmfFarResultantmmfFrFieldmmfFfRotorRotationStatorRotorNSPoleFaceDesign-MagneticFi76PoleFaceDesign–MagneticFieldsC1:Ifpeakofthefundamentalisunity,thenC1ispeakofacutalwaveform.NotethatWiesemancallsthisA1No-Load:motorisexcitedbythefieldwindingonlyPoleFaceDesign–MagneticFi77PoleFaceDesign–MagneticFieldCd1:Ifpeakofthefundamentalisunity,thenCd1ispeakofacutalwaveform.NotethatWiesemancallsthisAd1ArmaturemmfSinewavewhoseaxiscoincideswiththepolecenterPoleFaceDesign–MagneticFi78PoleFaceDesign–MagneticFieldCq1:Ifpeakofthefundamentalisunity,thenCq1ispeakofacutalwaveform.NotethatWiesemancallsthisAq1ArmaturemmfSinewavewhoseaxiscoincideswiththegapbetweenpolesPoleFaceDesign–MagneticFi79ListofPoleConstantsCd1–RatioofthefundamentaloftheairgapfluxproducedbythedirectaxisarmaturecurrenttothatwhichwouldbeproducedwithauniformgapequaltotheeffectivegapatthepolecenterCq1–RatioofthefundamentaloftheairgapfluxproducedbythequadratureaxisarmaturecurrenttothatwhichwouldbeproducedwithauniformgapequaltotheeffectivegapatthepolecenterC1–Theratioofthefundamentaltotheactualmaximumvalueofthefieldformwhenexcitedbythefieldonly(no-load)Cm–Ratiooffundamentalairgapfluxproducedbythefundamentalofarmaturemmftothatproducedbythefieldforthesamemaximummmf.Thisisthearmaturereactionconversionfactorforthedirectaxis.Cm=Cd1/C1K–Fluxdistributioncoefficient;theratiooftheareaoftheactualnoloadfluxwavetotheareaofitsfundamentalListofPoleConstantsCd1–R80PoleConstantsWhatfollowsaregraphsthatrelatethephysicalgeometryofthepoletothepoleconstants.ThesegraphscanbefoundintheappendixofEngineeringNote106.Thegraphsintheengineeringnoteareidenticaltographsthatfirstappearedina1927AIEEpapertitledGraphicalDeterminationofMagneticFieldsbyRobertWieseman.PoleConstantsWhatfollowsare81PoleConstantsWiesemanusedhandplottingtechniquestoplotthefluxfieldsofseveralhundredsofpoleshapestocomeupwiththegraphs.Duetotheintensivenatureofthework,thegraphsareplottedforalimitedrangeofpolegeometry:Polearc/Polepitch=0.5to.75 Gmax/Gmin=1.0to3.0 Minimumgap/polepitch=.005to.05 SincethesecurvesareusedbySMDStocalculatemotorperformance,SMDSwillnotrunwithanyoneofthesethreevariablesoutsideofthegivenrange.Thereisnoreason,besidesthelimitationsoftheoriginalcurves,whyvariablesoutsidetherangeslistedabovecouldn’tbeused.PoleConstantsWiesemanusedha82PoleFaceDesign–MagneticFieldsDeterminationofKPoleFaceDesign–MagneticFi83PoleFaceDesign–MagneticFieldsDeterminationofC1PoleFaceDesign–MagneticFi84PoleFaceDesign–MagneticFieldsDeterminationofCq1PoleFaceDesign–MagneticFi85PoleFaceDesign–MagneticFieldsDeterminationofCd1PoleFaceDesign–MagneticFi86PoleFaceDesign–MagneticFieldsPolefacedesignscomeintwoflavors,singleradiusanddoubleradius.Thereasonforthisistheshapeofthepoleheadrelativetothestatorboreradiushasalargeinfluenceoftheshapeofthefieldfluxwaveform.PoleFaceDesign–MagneticFi87ReactanceCalculationsXad=ReactanceofarmaturereactiondirectedalongthedirectaxisXaq=ReactanceofarmaturereactiondirectedalongthequadratureaxisT=CommonReactanceFactora=PermeanceFactorCd1=PoleConstantCq1=PoleConstantReactanceCalculationsXad=Re88T=CommonReactanceFactorm=#phasesL=StatorCoreLengthf=frequencyZ=SeriesConductorsperPhaseKw=WindingfactorStatorP=#PolesReactanceCalculationsT=CommonReactanceFactorRea89a=PermeanceFactorD=DiameterofStatorBoreP=#PolesKg=Carter’sGapCoefficeintgmin=MinimumairgapatcenterofpoleReactanceCalculationsa=PermeanceFactorReactance90ArmatureLeakageReactanceisdeterminedusingamethodologyidenticaltotheinductionmachine.SynchronousReactancesXd=Xl+XadXq=Xl+XaqArmatureLeakageReactanceis91ExcitationCalculations1.CalculatetotalMagneticFlux2.ConvertarmaturemagneticFluxtoFieldEquivalent3.CalculateEintbyaddingarmatureresistanceandleakagereactance
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年經(jīng)濟(jì)學(xué)原理與應(yīng)用模擬題集
- 2026年音樂基礎(chǔ)知識(shí)與鑒賞能力自測(cè)題集
- 2026年人工智能算法基礎(chǔ)測(cè)試
- 2026年經(jīng)濟(jì)學(xué)基礎(chǔ)知識(shí)考試題集
- 2026年法律職業(yè)資格考試沖刺法條與案例分析題
- 2026年鄭州商貿(mào)旅游職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)筆試參考題庫(kù)含詳細(xì)答案解析
- 2026年長(zhǎng)春東方職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)筆試參考題庫(kù)含詳細(xì)答案解析
- 2026年江西應(yīng)用工程職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試備考題庫(kù)含詳細(xì)答案解析
- 2026年安徽綠海商務(wù)職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考試題含詳細(xì)答案解析
- 2026年南京特殊教育師范學(xué)院?jiǎn)握芯C合素質(zhì)考試模擬試題含詳細(xì)答案解析
- 醫(yī)院培訓(xùn)課件:《頸椎病》
- 佛山市離婚協(xié)議書范本
- HG+20231-2014化學(xué)工業(yè)建設(shè)項(xiàng)目試車規(guī)范
- 工地春節(jié)停工復(fù)工計(jì)劃安排方案
- 中學(xué)檔案室管理職責(zé)范文(3篇)
- 連接員題庫(kù)(全)題庫(kù)(855道)
- 單元學(xué)習(xí)項(xiàng)目序列化-選擇性必修下冊(cè)第三單元為例(主題匯報(bào)課件)-統(tǒng)編高中語(yǔ)文教材單元項(xiàng)目式序列化研究
- 黑布林英語(yǔ)漁夫和他的靈魂
- 電站組件清洗措施及方案
- 冀教版五年級(jí)英語(yǔ)下冊(cè)全冊(cè)同步練習(xí)一課一練
- 城鎮(zhèn)土地估價(jià)規(guī)程
評(píng)論
0/150
提交評(píng)論