大學(xué)物理2-1第九章(熱力學(xué)基礎(chǔ))習(xí)題答案_第1頁
大學(xué)物理2-1第九章(熱力學(xué)基礎(chǔ))習(xí)題答案_第2頁
大學(xué)物理2-1第九章(熱力學(xué)基礎(chǔ))習(xí)題答案_第3頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

9-9-PAGE12習(xí)題九一系統(tǒng)由圖示的狀態(tài)a經(jīng)acd到達(dá)狀態(tài)b系統(tǒng)吸收了320J熱量系統(tǒng)對外作功126J(1)若adb過程系統(tǒng)對外作功42J,問有多少熱量傳入系? (2)當(dāng)系統(tǒng)由b沿曲線ba返回狀態(tài)a,外界對系統(tǒng)作功84試問系統(tǒng)是吸熱還是放?熱量是多?[解]由熱力學(xué)第一定律QEA得EQA在a<b過程中,E Eb a

EQ1

A320126194J1在adb過程中Q2

EA19442236J在ba過程中Q E3 a

E Ab 3

EA3

19484278J本過程中系統(tǒng)放熱。2mol 氮?dú)庥蓽囟葹?00K,壓強(qiáng)為1.013105Pa (1atm)的初態(tài)等溫地壓縮到2.026105Pa(2atm)。求氣體放出的熱量。[解]在等溫過程中氣體吸收的熱量等于氣體對外做的功,所以Q AT

mMmol

PRTlnP2

28.31300ln 3.46103J121即氣體放熱為3.46103J。EE-V圖所示。試證此直線表示等壓過程。[證明]設(shè)此直線斜率為k,則此直線方程為EkvE隨溫度的關(guān)系變化式為E所以kVkV k因此 C(C為恒量)T k

M CM mol

TkT又由理想氣體的狀態(tài)方程知,所以p為恒量即此過程為等壓過程。

pVC C)T2mol12l→m→2(2)1→2直線。試分別求出兩過程中氧氣對外作的功、吸收的熱量及內(nèi)能的變化。[解](1)AP1 2

V2

20

1.0131051038.1104J由氣體的內(nèi)能公式ECV

TpVRT得EC

pV

pVCV

iRpV2 ipVvR R 2對于氧氣i=5,所以其內(nèi)能的變化為 E5

pV105501.013105103104

J52 2 2 15此過程吸收的熱量為Q1

E1

A1.31048.11049.4104J1(2)在從1→2過程中,由圖知氧氣對外作功為 A 1 2 2

pV1

V2

1

1.0131051035.1104J內(nèi)能的變化E E E2 2 1

1.3104J吸收的熱量Q E A2 2

1.31045.11046.4104J10mol單原子理想氣體在壓縮過程中外界對它作功(2)此過程中氣體的摩爾熱容量。[解(1)內(nèi)能的增量為CV

T1038.311124.7J2氣體吸收的熱量QEA124.720984.3J(2)由氣體摩爾熱容量知C 84.3JmolK1Q 1101atm,體積為1103m3的氧氣CV

5R2)從0℃加熱到100℃。試分別求在等體(積)過程和等壓過程中各需吸收多少熱量。pV pV[解]由理想氣體狀態(tài)方程 pVRT 0 RT RT0在等容過程中吸收的熱量為 pV 5 5 1.0131051103 Q CT 0 0 RT 10093JV V RT 2 2 2730在等壓過程中吸收的熱量為Q C77Q 793p p 2 5 V 5已知?dú)錃獾亩w(積)cV

314JK,若將氫氣看作理想氣體,求氬原子的質(zhì)量。(定體(積)摩爾熱容CV

M c)。molV[解]由定容摩爾熱容量的定義知 C iR 3RV 2 23因此M

RCV2mol c cV V3M 2R 3 8.31 氬原子的質(zhì)量為m mol 6.591026kgN Nc 2 6.021023314A AV為測定氣體的 (C Cp V

)值有時(shí)用下列方法:一定量的氣體的初始溫度、體積和壓強(qiáng)為T、V0

p,用一根電爐4對它緩慢加熱。兩次加熱的電流強(qiáng)度和時(shí)間相同,第一次0 0保持體積V

Tp0 1

。第二次保持壓強(qiáng)p0

不變,而溫度和體積變?yōu)閜pT和V。試證明 2 1

V11

Vp0 0[證明]兩次加熱氣體吸收的熱量相同,等容過程吸收的熱量為Q1

CV

T0等壓過程吸收的熱量為 Q2

Cp

T0由QQ1

可得 V 1

TC0 p

T0C所以 CV

TT 1 0TT T2 0由理想氣體狀態(tài)方程pV0 0

RT0

pV RT10 1

pVRT01 2因此TT1 0

1p0Vp0p

T T2

VV01R0p0pp所以得到

V11

Vp0 01mol固體的狀態(tài)方程為vv0

aTbp,內(nèi)能EcTapT,式中v0

、a、b、c均為常量,求該固體的C 、C 。p V[解]由熱力學(xué)第一定律可得dQdEddEpdV (1)由已知條件可得 dVadTbdp dECdTaTdpapdT (3)將(2)、(3)代(1)得dQCdTaTdpapdTbdp (4)在等壓過程中,dp0所以dQ因此Cp在等容過程中dV0

C2ap代入(2)式得adTbdp0 因此dpadTb代入(4)式得

a

a

a2TdQCdTaT

dTapdTb

padTbbdTcap b dT所以CV

cap

a2Tb

ECV

TaE V

。其中CV

、a、E0

為常數(shù),試證明其絕熱過程方程為TVbRV常數(shù)[證明]范德瓦爾斯氣體的狀態(tài)方程為

p

abRT (1)V2又由已知條件可得 dECV

dT

adV (2)V2絕熱過程dQ0,由熱力學(xué)第一定律得dEdApdV (3)由(2)、(3)式可得CV

dT aV

dVpdV

(4)由(1)式可得 p RT a

(5)Vb V2將(5)代入(4)式有CV

dT aV

dV aV2

RTdV dVVb解得CV

RTVb積分得

CVlnTlnVbR

常數(shù)即 VbTCVR常數(shù)這就是范德瓦爾斯氣體的絕熱過程方程。功;(2)循環(huán)效率。[解](1)一次循環(huán)過程氣體對外作功的大小為閉合曲線所包圍的面積,由圖知,其包圍的面積為Sp2

pV1

V1 105511051032.0103J該循環(huán)對外作功為正,所以A2.0103

J(2)2→3,1→22→3為等壓過程,吸收熱量為Q

7 pV3 p2V2 7 C TT1 p 3 27

R3 pV pV2 2 3 3 2 2 1051012

1051031.4104J1→2為等容過程,吸收熱量為Q

5 pV p

5 2 2C T T 2 2

11 p

pV1 V 2 1 2 5

2 2 2 11 101512

1051031.25103J因此吸收的總熱量為QQQ1 2

1.525104J該循環(huán)的效率為

A2.0103 100%13.1%Q 1.525104一理想氣體的循環(huán)過程如圖所示,其中ca為絕熱過程,點(diǎn)a的狀態(tài)參量為,V,1 1點(diǎn)b的狀態(tài)參量為T,V2 2

,理想氣體的熱容比為,求(1)氣體在ab、bc過程中與外界是否有熱交換?數(shù)量是多少?(2)點(diǎn)c的狀態(tài)參量;(3)循環(huán)的效率。[解](1)ab過程是等溫過程,系統(tǒng)吸收熱量為Q ARTT 1

Vln 2V1bc過程是等容過程,系統(tǒng)吸收熱量為QV

CV

T2因TTc 2

,故該過程是放熱過程。(2)從圖上可看到V Vc 2

V

1又ac為絕熱過程,故根據(jù)絕熱方程T 1 T 1 T又有 pVpV

c Vc

1 V 12c c 11V

V

RTV

1得到 pcp1

1V V

1 1 1VVV VV2 2 1 2 2QVQ1VQVQ1V11 2C(3)1C

1 V

T CC 1

T 2

V1T2

1VRT

Vln 2

Vln

V T1 V 1

V 11 11abcd(積da為等壓線,試證明其效率為1TdTaTTc b式中了Ta

TTTb c

分別為ab、c、d各狀態(tài)的溫度,CC 。p v[證明] da為放熱過程其放出的熱量為Q2

Cp

Tabc為吸熱過程,其吸收的熱量為Q1

CV

TbQ

T T Tp 所以其效率為1p aQa

1T

a 1 dT TT1 V c b c bBC是等溫線。已知系統(tǒng)在COA過程中放熱100J,OAB的面積是30JODC的面積為70J,試問在BOD??[解]因COA是等溫線,COA過程中ACA

Q 100JCA又因AB、DC為絕熱線,EAB

AAB

E ADC DCOAB過程系統(tǒng)作負(fù)功,ODC過程系統(tǒng)作正功,整個(gè)循環(huán)過程系統(tǒng)作功 A A A AAB BD DC

7030BOD過程中系統(tǒng)吸熱QABD

EBD

140EAB

EDC

EBD

140E EB A由于COA是等溫過程,過程中系統(tǒng)內(nèi)能變化為零,即EB因此BOD過程中系統(tǒng)吸熱Q140

E 0Aabcd分別是溫度為T、T1 2

的等溫線,bc、da為等壓過程,設(shè)工作物質(zhì)為理想氣體。證明這致冷機(jī)致冷系數(shù)為:

T i2112TT 2lnp2112p1[證明]ab為等溫過程,吸收熱量為QA1 1

RT1

pln 2p1cd為等溫過程,其放出的熱量大小為Q A2

RT2

pln 2p1bc為等壓過程,吸收的熱量為Q3

Cp

T1daQ4

Cp

T1Q Q QQ T i2所以致冷系數(shù)吸

3

1 pA Q Q Q

QQ T T 放 吸 2 4

1 3

1 2ln 2p1P,體積為

,經(jīng)等溫膨脹使體積增加一倍,然后保持1 1壓強(qiáng)不變,使其壓縮到原來的體積,最后保持體積不變,使其回到初態(tài)。PV圖上畫出過程曲線;[解](1)過程曲線acacbp1p20 V V V1 2(2)系統(tǒng)經(jīng)過循環(huán)又回到初態(tài),所以其內(nèi)能改變量E0a→b為等溫過程,系統(tǒng)對外作正功ARTlnV2pVln21 V 111

pV b→c為等壓過程,系統(tǒng)對外作負(fù)功,其數(shù)值大小為A p2 2

V V2

1V2

V V2 1pV 過程中總功 AAA p

ln2

11V V 0.19pV2 11

V 2 1 112系統(tǒng)從外界吸收的凈熱量QA0.19pV11a→b過程吸熱為QApVln21 1 11Q

p

pVc→a過程中吸收的熱量為

C T T2 V a 3

C 11 21V3 pV 3 pp2

V2p

11V4pV A

1 2 0.19pV

1 V 1 12所以

1

0.13213.2%QQ1 2

pVln23pV11 4 11一可逆卡諾熱機(jī)低溫?zé)嵩吹臏囟葹?7℃,熱機(jī)效率為40?今欲將熱機(jī)效率提高到?[解]可逆卡諾循環(huán)的效率為1T2T1T 所以T2 300 500KT 1 1 10.4若50%,則T

600K1 1 10.5所以TTT

600500100K1 129kg空氣為工作物質(zhì),高溫?zé)嵩春偷蜏責(zé)嵩吹臏囟确謩e為27℃和-73℃,求此熱機(jī)的效率。若在等溫膨脹過程中工作物質(zhì)的體積增大到2.718?[解]此熱機(jī)的效率為1T1

1

200300

33.3%在等溫膨脹過程中,吸收的熱量為QRT

ln

29103 8.31300ln2.7182.49104

J1又AQ1

1 V 291所以 A

12.491048.311053

J在高溫?zé)嵩礊椤?、低溫?zé)嵩礊?000J,今維持低溫?zé)嵩礈囟炔蛔?,提高高溫?zé)嵩吹臏囟龋蛊湟淮窝h(huán)對外作功10000J,若兩次循環(huán)該熱機(jī)都工作在相同的兩條絕熱線之間,試求:后一卡諾循環(huán)的效率。后一卡諾循環(huán)的高溫?zé)嵩吹臏囟?。[解](1)設(shè)前一卡諾循環(huán)從高溫?zé)嵩次諢崃繛镼1

,則有 1AQA1又1T2

1

3001T1所以QA1 1

400 480004320后一卡挪循環(huán)從高溫?zé)嵩次諢崃繛镼QAA3200010000800034000J1 1 2 1

A

10000所以第二個(gè)卡諾循環(huán)的效率為

100%29.4%Q 340001(2)第二個(gè)卡諾循環(huán)的高溫?zé)嵩礈囟葹門 T2 300 1 1 10.294一臺家用冰箱,放在氣溫為 300K的房間內(nèi),做一盤的冰需從冷凍室取走2.09105J的熱量。設(shè)冰箱為理想卡諾致冷機(jī)。求做一盤冰所需要的功;若此冰箱能以2.09105J(3)?[解](1)致冷系數(shù)為Q2 T2A TT1 2 Q TT 2.09105300260 得到 A2 1T2

2 3.22104J2602.09105 取走制一盤冰的熱量所需要的時(shí)間為t

2.09102

103s所以電功率為P

A3.22104t 103做一盤冰所需要的時(shí)間為103s。絕熱容器中間有一無摩擦、絕熱的可動活塞,如圖所示,活塞兩側(cè)各有mol的理想1.5P,V0 0

、T?,F(xiàn)將一通電線圈置入左側(cè)氣體中,對氣體緩慢0加熱,左側(cè)氣體吸熱膨脹推動活塞向右移,使右側(cè)氣體壓強(qiáng)增加為3.375P0

,求;?(3)(4)?[解(1)右側(cè)氣體所發(fā)生的過程為絕熱過程。它對外所做的功的負(fù)值就是左側(cè)氣體所作的功。所以左側(cè)氣體作功為AAp0V0p2V21V

V0 0

V3.375pV2 2 0 2因此V 2

3710pV p

3.375

3.3751pV p3.37510 0 0 0所以 A 0 0 2 2 pV1 1 0 0對右側(cè)氣體,由絕熱方程知p

1T得到T2

33.37T0

0 0 0 20V左側(cè)氣體末態(tài)體積為VV1 0

V V0

00 13.375ppV

1 V3.3751pV T03.3751pV T

3.375 1 得到T11

3.3752 1 R

0 0 0

2.250 0左側(cè)氣體吸收熱量QEACTACTpV1 1V 10V000 0由pV RT

知 T pV000 0 0 0 R0C C R又由 p VC CV V

1.5,得到CV

2R pV所以 Q1

2R4.250 R

pV0

9.5pV0 0如圖所示,在剛性絕熱容器中有一可無摩擦移動而且不漏氣的AB1molHe

氣和O2

氣。初態(tài)H、O 的溫e 2度各為TA

300K,TB

600K;壓強(qiáng)均為1atm。求:PHe

氣和O2

氣各自熵的變化。[解](1)因中間是導(dǎo)熱隔板,過程中兩部分氣體熱量變化和作功的數(shù)值都相等,所以內(nèi)能變化量的數(shù)值也相等,且由于初溫度不同而末溫度相同所以一正一負(fù)。因此

C

TTA

C VB

T解得TCVATACVBTB

3RT 2 A

5RT2

33005

487.5KCVA VB

3R5R2 2

35因平衡時(shí)溫度、壓強(qiáng)都相等,且都是1mol,所以體積也相等。V V

1

RT

1 R RVV

A B2

2A

A

B2

T T 450 A B p p

A B pA B A A根據(jù)理想氣體狀態(tài)方程得到壓強(qiáng)為pRT

1V 450

450(2)He氣熵變dQ

dE

TV dT VRdV He He AVA A AHe T

T T V TA A3 T

T T Rln Rln A B9.45JK2 T A A氧氣熵變S O2

dQ dE 22O O22T T

TBV VBT TVBBVRdVBBV TBBB3 T

T T Rln Rln A B6.68JK2 T B B0℃

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論