2022年福建省莆田市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022年福建省莆田市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022年福建省莆田市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022年福建省莆田市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022年福建省莆田市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年福建省莆田市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量

2.鋼筋混凝土軸心受拉構(gòu)件正截面承載力計(jì)算時(shí),用以考慮縱向彎曲彎曲影響的系數(shù)是()。

A.偏心距增大系數(shù)B.可靠度調(diào)整系數(shù)C.結(jié)構(gòu)重要性系數(shù)D.穩(wěn)定系數(shù)

3.當(dāng)x→0時(shí),sinx是sinx的等價(jià)無窮小量,則k=()A.0B.1C.2D.3

4.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

5.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2

6.

7.

8.

9.設(shè)f(x)為連續(xù)函數(shù),則()'等于().A.A.f(t)B.f(t)-f(a)C.f(x)D.f(x)-f(a)

10.

11.以下結(jié)論正確的是().

A.

B.

C.

D.

12.

13.

14.A.A.

B.

C.

D.

15.A.A.-(1/2)B.1/2C.-1D.2

16.

17.

18.

19.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無水平漸近線,又無鉛直漸近線

20.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.

B.

C.

D.

二、填空題(20題)21.交換二重積分次序=______.

22.

23.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為__________.

24.

25.設(shè)z=xy,則出=_______.

26.

27.

28.

29.

30.

31.

32.

33.

34.設(shè)函數(shù)z=f(x,y)存在一階連續(xù)偏導(dǎo)數(shù),則全微分出dz=______.

35.

36.

37.

38.

39.

40.

三、計(jì)算題(20題)41.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

42.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

43.

44.求微分方程y"-4y'+4y=e-2x的通解.

45.

46.

47.

48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

50.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

52.證明:

53.求曲線在點(diǎn)(1,3)處的切線方程.

54.

55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

56.將f(x)=e-2X展開為x的冪級(jí)數(shù).

57.

58.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

59.求微分方程的通解.

60.

四、解答題(10題)61.

62.求曲線y=ln(1+x2)的凹區(qū)間。

63.

64.將展開為x的冪級(jí)數(shù).

65.

66.

67.計(jì)算∫tanxdx.

68.(本題滿分10分)

69.

70.(本題滿分8分)設(shè)y=y(x)由方程x2+2y3+2xy+3y-x=1確定,求y’

五、高等數(shù)學(xué)(0題)71.求y=2x3一9x2+12x+1在[0,3]上的最值。

六、解答題(0題)72.

參考答案

1.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.

2.D

3.B由等價(jià)無窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價(jià)無窮小量的另一種表述形式,由于當(dāng)x→0時(shí),有sinx~x,由題設(shè)知當(dāng)x→0時(shí),kx~sinx,從而kx~x,可知k=1。

4.D本題考查了曲線的漸近線的知識(shí)點(diǎn),

5.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由題設(shè)知f'(x0)=1,又由題設(shè)條件知

可知應(yīng)選B.

6.D

7.C

8.B

9.C本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo)性質(zhì).

這是一個(gè)基本性質(zhì):若f(x)為連續(xù)函數(shù),則必定可導(dǎo),且

本題常見的錯(cuò)誤是選D,這是由于考生將積分的性質(zhì)與牛頓-萊布尼茨公式混在了一起而引起的錯(cuò)誤.

10.C

11.C

12.C解析:

13.D

14.C本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

因此選C.

15.A

16.D

17.C

18.D解析:

19.A

20.C

21.

本題考查的知識(shí)點(diǎn)為交換二重積分次序.

積分區(qū)域D:0≤x≤1,x2≤y≤x

積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此

22.

23.[-1,1

24.x

25.

26.63/12

27.

28.y=1/2y=1/2解析:

29.2

30.1/61/6解析:

31.

32.1/21/2解析:

33.1/x

34.依全微分存在的充分條件知

35.-1本題考查了洛必達(dá)法則的知識(shí)點(diǎn).

36.

37.e-1/2

38.

39.e-3/2

40.11解析:

41.

42.由等價(jià)無窮小量的定義可知

43.由一階線性微分方程通解公式有

44.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

45.

46.

47.

48.由二重積分物理意義知

49.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

50.

51.函數(shù)的定義域?yàn)?/p>

注意

52.

53.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

54.

55.

56.

57.

58.

列表:

說明

59.

60.

61.

62.

63.

64.

本題考查的知識(shí)點(diǎn)為將函數(shù)展開為x的冪級(jí)數(shù).將函數(shù)展開為x的冪級(jí)數(shù)通常利用間接法.先將f(x)與標(biāo)準(zhǔn)展開式中的函數(shù)對(duì)照,以便確定使用相應(yīng)的公式.如果f(x)可以經(jīng)過恒等變形變?yōu)闃?biāo)準(zhǔn)展開式中函數(shù)的和、差形式,則可以先變形.

65.解如圖所示,將積分區(qū)域D視作y-型區(qū)域,即

66.

67.

;本題考查的知識(shí)點(diǎn)為定積分的換元積分法.

68.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分,選擇積分次序.

積分區(qū)域D如圖1—3所示.

D可以表示為

【解題指導(dǎo)】

如果將二重積分化為先對(duì)x后對(duì)y的積分,將變得復(fù)雜,因此考生應(yīng)該學(xué)會(huì)選擇合適的積分次序.

69.

70.本題考查的知識(shí)點(diǎn)為隱函數(shù)求導(dǎo)法.

解法1將所給方程兩端關(guān)于x求導(dǎo),可得

解法2

y=y(tǒng)(x)由方程F(x,y)=0確定,求y通常有兩種方法:

-是將F(x,y)=0兩端關(guān)于x求導(dǎo),認(rèn)定y為中間變量,得到含有y的方程,從中解出y.

對(duì)于-些特殊情形,可以從F(x,y)=0中較易地解出y=y(tǒng)(x)時(shí),也可以先求出y=y(tǒng)(x),再直接求導(dǎo).

71.y=2x3一9x2+12x+1;y"=6x2一18x+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論