版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年黑龍江省齊齊哈爾市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.若,則下列命題中正確的有()。A.
B.
C.
D.
2.若x0為f(x)的極值點(diǎn),則().A.A.f(x0)必定存在,且f(x0)=0
B.f(x0)必定存在,但f(x0)不-定等于零
C.f(x0)不存在或f(x0)=0
D.f(x0)必定不存在
3.設(shè)y=cosx,則y''=()A.sinxB.cosxC.-cosxD.-sinx
4.輥軸支座(又稱(chēng)滾動(dòng)支座)屬于()。
A.柔索約束B(niǎo).光滑面約束C.光滑圓柱鉸鏈約束D.連桿約束
5.個(gè)人試圖在組織或社會(huì)的權(quán)威之外建立道德準(zhǔn)則是發(fā)生在()
A.前慣例層次B.慣例層次C.原則層次D.以上都不是
6.
7.設(shè)函數(shù)f(x)=arcsinx,則f'(x)等于().
A.-sinx
B.cosx
C.
D.
8.當(dāng)α<x<b時(shí),f'(x)<0,f'(x)>0。則在區(qū)間(α,b)內(nèi)曲線(xiàn)段y=f(x)的圖形A.A.沿x軸正向下降且為凹B.沿x軸正向下降且為凸C.沿x軸正向上升且為凹D.沿x軸正向上升且為凸
9.
10.當(dāng)x一0時(shí),與3x2+2x3等價(jià)的無(wú)窮小量是().
A.2x3
B.3x2
C.x2
D.x3
11.在企業(yè)中,財(cái)務(wù)主管與財(cái)會(huì)人員之間的職權(quán)關(guān)系是()
A.直線(xiàn)職權(quán)關(guān)系B.參謀職權(quán)關(guān)系C.既是直線(xiàn)職權(quán)關(guān)系又是參謀職權(quán)關(guān)系D.沒(méi)有關(guān)系12.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
13.
14.
A.
B.
C.
D.
15.A.有一個(gè)拐點(diǎn)B.有三個(gè)拐點(diǎn)C.有兩個(gè)拐點(diǎn)D.無(wú)拐點(diǎn)
16.
17.設(shè)y=lnx,則y″等于().
A.1/x
B.1/x2
C.-1/x
D.-1/x2
18.若x0為f(x)的極值點(diǎn),則().A.A.f'(x0)必定存在,且f'(x0)=0
B.f'(x0)必定存在,但f'(x0)不一定等于零
C.f'(x0)不存在或f'(x0)=0
D.f'(x0)必定不存在
19.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。
A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)
B.勻速直線(xiàn)運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為
C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
20.
二、填空題(20題)21.過(guò)點(diǎn)M0(1,2,-1)且與平面x-y+3z+1=0垂直的直線(xiàn)方程為_(kāi)________。
22.
23.
24.
25.
26.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。27.設(shè)y=sin2x,則y'______.28.過(guò)原點(diǎn)且與直線(xiàn)垂直的平面方程為_(kāi)_____.
29.
30.
31.
32.二元函數(shù)z=x2+3xy+y2+2x,則=________。33.34.設(shè)區(qū)域D由y軸,y=x,y=1所圍成,則.
35.微分方程y'=ex的通解是________。
36.37.38.
39.
40.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。三、計(jì)算題(20題)41.
42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
43.求微分方程y"-4y'+4y=e-2x的通解.
44.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.46.求微分方程的通解.47.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).48.證明:49.
50.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
51.
52.53.54.55.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
56.
57.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.59.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則60.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.四、解答題(10題)61.62.63.64.求,其中區(qū)域D是由曲線(xiàn)y=1+x2與y=0,x=0,x=1所圍成.65.設(shè)F(x)為f(x)的一個(gè)原函數(shù),且f(x)=xlnx,求F(x).
66.
67.
68.求曲線(xiàn)y=x2、直線(xiàn)y=2-x與x軸所圍成的平面圖形的面積A及該圖形繞y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vy。
69.
70.五、高等數(shù)學(xué)(0題)71.已知∫f(ex)dx=e2x,則f(x)=________。
六、解答題(0題)72.求垂直于直線(xiàn)2x-6y+1=0且與曲線(xiàn)y=x3+3x2-5相切的直線(xiàn)方程.
參考答案
1.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。
2.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).
若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:
(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(x)=|x|的極值點(diǎn).
(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f(x0)=0.
從題目的選項(xiàng)可知應(yīng)選C.
本題常見(jiàn)的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f(x0)=0”認(rèn)為是極值的充分必要條件.
3.Cy=cosx,y'=-sinx,y''=-cosx.
4.C
5.C解析:處于原則層次的個(gè)人試圖在組織或社會(huì)的權(quán)威之外建立道德準(zhǔn)則。
6.B
7.C解析:本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.
可知應(yīng)選C.
8.A由于在(α,b)內(nèi)f'(x)<0,可知f(x)單調(diào)減少。由于f"(x)>0,
可知曲線(xiàn)y=f'(x)在(α,b)內(nèi)為凹,因此選A。
9.A
10.B由于當(dāng)x一0時(shí),3x2為x的二階無(wú)窮小量,2x3為戈的三階無(wú)窮小量.因此,3x2+2x3為x的二階無(wú)窮小量.又由,可知應(yīng)選B.
11.A解析:直線(xiàn)職權(quán)是指管理者直接指導(dǎo)下屬工作的職權(quán)。財(cái)務(wù)主管與財(cái)會(huì)人員之間是直線(xiàn)職權(quán)關(guān)系。
12.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
13.A
14.D
故選D.
15.D本題考查了曲線(xiàn)的拐點(diǎn)的知識(shí)點(diǎn)
16.C
17.D由于Y=lnx,可得知,因此選D.
18.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).
若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:
(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(a)=|x|的極值點(diǎn).
(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f'(x0)=0.
從題目的選項(xiàng)可知應(yīng)選C.
本題常見(jiàn)的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f'(x0)=0”認(rèn)為是極值的充分必要條件.
19.C
20.D解析:
21.
22.
解析:
23.0
24.
25.(e-1)226.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx27.2sinxcosx本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)運(yùn)算.
28.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線(xiàn)的關(guān)系.
由于已知直線(xiàn)與所求平面垂直,可知所給直線(xiàn)的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過(guò)原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0
29.
30.4π
31.[-11)32.因?yàn)閦=x2+3xy+y2+2x,33.ln(1+x)+C本題考查的知識(shí)點(diǎn)為換元積分法.
34.1/2本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.
解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.
作平行于y軸的直線(xiàn)與區(qū)域D相交,沿y軸正向看,入口曲線(xiàn)為y=x,作為積分下限;出口曲線(xiàn)為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對(duì)x積分,后對(duì)Y積分的二次積分.
作平行于x軸的直線(xiàn)與區(qū)域D相交,沿x軸正向看,入口曲線(xiàn)為x=0,作為積分下限;出口曲線(xiàn)為x=y,作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
35.v=ex+C
36.yf''(xy)+f'(x+y)+yf''(x+y)37.e;本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
注意:可以變形,化為形式的極限.但所給極限通??梢韵茸冃危?/p>
38.
39.1/π40.本題考查的知識(shí)點(diǎn)為原函數(shù)的概念。
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。
41.
42.由二重積分物理意義知
43.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
44.
45.
46.
47.
列表:
說(shuō)明
48.
49.由一階線(xiàn)性微分方程通解公式有
50.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
51.
則
52.
53.
54.
55.
56.57.函數(shù)的定義域?yàn)?/p>
注意
58.
59.由等價(jià)無(wú)窮小量的定義可知60.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.
因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)
(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為
61.
62.
63.64.積分區(qū)域D如圖1-4所示。D可以表示為0≤x≤1,0≤y≤1+x2本題考查的知識(shí)點(diǎn)為計(jì)算二重積分,選擇積分次序。如果將二重積分化為先對(duì)x后對(duì)y的積分,將變得復(fù)雜,因此考生應(yīng)該學(xué)會(huì)選擇合適的積分次序。65.由題設(shè)可得知本題考查的知識(shí)點(diǎn)為兩個(gè):原函數(shù)的概念和分部積分法.
66.本題考查的知識(shí)點(diǎn)為定積分的幾何應(yīng)用:利用定積分表示平面圖形的面積;利用定積分求繞坐標(biāo)軸旋轉(zhuǎn)而成旋轉(zhuǎn)體體積.
所給平面圖形如圖4—1中陰影部分所示,
注這是常見(jiàn)的考試題型,考生應(yīng)該熟練掌握.
67.
68.
69.
70.
71.∫f(ex)dx=e2x兩邊對(duì)x求導(dǎo)(∫f(ex)dx)"=(e2x)"∴f(ex)=2e2x一2(ex)2∴f(x)一2x2
∴f"(x)=4x∫f(ex)dx=e2x,兩邊對(duì)x求導(dǎo)(∫f(ex)dx)"=(e2x)"∴f(ex)=2e2x一2(ex)2∴f(x)一2x2
∴f"(x)=4x72.由于直線(xiàn)2x-6y+1=0的斜率k=1/3
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑安裝合同
- 2025年眉山市青神縣人民法院公開(kāi)招聘勞務(wù)派遣司法警察的備考題庫(kù)及1套完整答案詳解
- 咸安區(qū)2026年面向教育部直屬師范大學(xué)公費(fèi)師范畢業(yè)生專(zhuān)項(xiàng)招聘?jìng)淇碱}庫(kù)及參考答案詳解一套
- 2025年甘肅電器科學(xué)研究院聘用人員招聘?jìng)淇碱}庫(kù)及一套參考答案詳解
- 什邡市人力資源和社會(huì)保障局什邡市民政局關(guān)于2025年面向全市公開(kāi)選調(diào)工作人員的備考題庫(kù)及完整答案詳解一套
- 2026年培訓(xùn)課程合同
- 2025年中國(guó)科學(xué)院深海科學(xué)與工程研究所招聘?jìng)淇碱}庫(kù)(十三)及1套完整答案詳解
- 中化地質(zhì)礦山總局地質(zhì)研究院2026年高校應(yīng)屆畢業(yè)生招聘?jìng)淇碱}庫(kù)及一套完整答案詳解
- 縣總工會(huì)過(guò)緊日子經(jīng)驗(yàn)材料
- 酒駕個(gè)人討論辨析發(fā)言材料
- 20道長(zhǎng)鑫存儲(chǔ)設(shè)備工程師崗位常見(jiàn)面試問(wèn)題含HR常問(wèn)問(wèn)題考察點(diǎn)及參考回答
- 抖音ip孵化合同范本
- 小升初語(yǔ)文總復(fù)習(xí)《文章主要內(nèi)容概括》專(zhuān)項(xiàng)練習(xí)題(附答案)
- DL-T606.5-2009火力發(fā)電廠(chǎng)能量平衡導(dǎo)則第5部分-水平衡試驗(yàn)
- python程序設(shè)計(jì)-說(shuō)課
- 國(guó)家電網(wǎng)智能化規(guī)劃總報(bào)告
- 遙遠(yuǎn)的向日葵地
- 箱涵施工組織設(shè)計(jì)樣本
- 質(zhì)量意識(shí)培養(yǎng)
- 2000人學(xué)校食堂人員配置標(biāo)準(zhǔn)
- 低壓線(xiàn)路的安裝、運(yùn)行及維護(hù)
評(píng)論
0/150
提交評(píng)論