版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.圖示為研磨細(xì)砂石所用球磨機(jī)的簡(jiǎn)化示意圖,圓筒繞0軸勻速轉(zhuǎn)動(dòng)時(shí),帶動(dòng)筒內(nèi)的許多鋼球一起運(yùn)動(dòng),當(dāng)鋼球轉(zhuǎn)動(dòng)到一定角度α=50。40時(shí),它和筒壁脫離沿拋物線下落,借以打擊礦石,圓筒的內(nèi)徑d=32m。則獲得最大打擊時(shí)圓筒的轉(zhuǎn)速為()。
A.8.99r/minB.10.67r/minC.17.97r/minD.21.35r/min
2.
3.
4.
5.()。A.
B.
C.
D.
6.
7.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
8.
9.設(shè)y=lnx,則y″等于().
A.1/x
B.1/x2
C.-1/x
D.-1/x2
10.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x
11.
12.在特定工作領(lǐng)域內(nèi)運(yùn)用技術(shù)、工具、方法等的能力稱為()
A.人際技能B.技術(shù)技能C.概念技能D.以上都不正確
13.若收斂,則下面命題正確的是()A.A.
B.
C.
D.
14.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
15.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
16.
17.A.1B.0C.2D.1/2
18.
19.
20.
二、填空題(20題)21.
22.
23.
24.
25.
26.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.
27.
28.
29.
30.
31.
32.
33.曲線y=x3+2x+3的拐點(diǎn)坐標(biāo)是_______。
34.設(shè)f(x)=sinx/2,則f'(0)=_________。
35.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.
42.求曲線在點(diǎn)(1,3)處的切線方程.
43.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
44.求微分方程的通解.
45.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
46.
47.
48.
49.求微分方程y"-4y'+4y=e-2x的通解.
50.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
51.證明:
52.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
53.
54.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
56.
57.
58.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
60.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
四、解答題(10題)61.
62.
63.
64.求微分方程y"-y'-2y=3ex的通解.
65.
66.
67.
68.求z=x2+y2在條件x+y=1下的條件極值.
69.
70.
五、高等數(shù)學(xué)(0題)71.以下結(jié)論正確的是()。
A.∫f"(x)dx=f(x)
B.
C.∫df(z)=f(x)
D.d∫f(x)dx=f(x)dx
六、解答題(0題)72.
參考答案
1.C
2.A
3.A
4.D
5.C
6.D
7.B
8.B
9.D由于Y=lnx,可得知,因此選D.
10.D
11.A解析:
12.B解析:技術(shù)技能是指管理者掌握和熟悉特定專業(yè)領(lǐng)域中的過(guò)程、慣例、技術(shù)和工具的能力。
13.D本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的基本性質(zhì).
由級(jí)數(shù)收斂的必要條件:若收斂,則必有,可知D正確.而A,B,C都不正確.
本題常有考生選取C,這是由于考生將級(jí)數(shù)收斂的定義存在,其中誤認(rèn)作是un,這屬于概念不清楚而導(dǎo)致的錯(cuò)誤.
14.B本題考查的知識(shí)點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).
已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個(gè)解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應(yīng)排除D.又由解的結(jié)構(gòu)定理可知,當(dāng)y1,y2線性無(wú)關(guān)時(shí),C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應(yīng)該選B.
本題中常見(jiàn)的錯(cuò)誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導(dǎo)致的錯(cuò)誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)線性無(wú)關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒(méi)有指出)y1,y2為線性無(wú)關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應(yīng)選B.
15.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
16.B
17.C
18.D解析:
19.A解析:
20.C
21.0
22.
本題考查了交換積分次序的知識(shí)點(diǎn)。
23.
24.
25.00解析:
26.0本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
所給冪級(jí)數(shù)為不缺項(xiàng)情形
因此收斂半徑為0.
27.0
28.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
29.ex2
30.
本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.31.12dx+4dy.
本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.
32.
解析:
33.(03)
34.1/2
35.1/(1-x)2
36.0
37.
38.3/2
39.2x-4y+8z-7=0
40.1/π
41.
42.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
43.
44.
45.
46.
47.
則
48.由一階線性微分方程通解公式有
49.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
50.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
51.
52.由二重積分物理意義知
53.
54.
55.
列表:
說(shuō)明
56.
57.
58.由等價(jià)無(wú)窮小量的定義可知
59.
60.函數(shù)的定義域?yàn)?/p>
注意
61.
62.
63.
64.相應(yīng)的齊次微分方程為y"-y'-2y=0.其特征方程為r2-r-2=0.其特征根為r1=-1,r2=2.齊次方程的通解為Y=C1e-x+C2e2x.由于f(x)=3ex,1不是其特征根,設(shè)非齊次方程的特解為y*=Aex.代入原方程可得
原方程的通解為
本題考查的知識(shí)點(diǎn)為求解二階線性常系數(shù)非齊次微分方程.
由二階線性常系數(shù)非齊次微分方程解的結(jié)構(gòu)定理可知,其通解y=相應(yīng)齊次方程的通解Y+非齊次方程的一個(gè)特解y*.
其中Y可以通過(guò)求解特征方程得特征根而求出.而yq*可以利用待定系數(shù)法求解.
65.
66.
67.
68.構(gòu)造拉格朗日函數(shù)
可解得唯一組解x=1/2,y=1/2.所
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 氮?dú)獯祾呒夹g(shù)方案
- 《GBT 32690-2016 發(fā)酵法有機(jī)酸良好生產(chǎn)規(guī)范》專題研究報(bào)告
- 《GB-T 19933.4-2014土方機(jī)械 司機(jī)室環(huán)境 第4部分:采暖、換氣和空調(diào)(HVAC)的試驗(yàn)方法和性能》專題研究報(bào)告
- 《AQ-T 4233-2013建設(shè)項(xiàng)目職業(yè)病防護(hù)設(shè)施設(shè)計(jì)專篇編制導(dǎo)則》專題研究報(bào)告
- 《GBT 32556.1-2016 帶端鍵傳動(dòng)的銑刀桿 第 1 部分:帶莫氏錐柄的銑刀桿尺寸》專題研究報(bào)告
- 2026年內(nèi)蒙古建筑職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)及參考答案詳解1套
- 《藥品生物檢定技術(shù)》創(chuàng)新課件-中藥養(yǎng)生手串創(chuàng)意方案
- 珠寶行業(yè)珠寶鑲嵌工藝總監(jiān)崗位招聘考試試卷及答案
- 2026年醫(yī)院醫(yī)技科工作計(jì)劃(3篇)
- 《患者身份識(shí)別管理標(biāo)準(zhǔn)》測(cè)試題及答案
- 2025年大學(xué)康復(fù)治療學(xué)(運(yùn)動(dòng)療法學(xué))試題及答案
- 胎膜早破的診斷與處理指南
- 進(jìn)出口貨物報(bào)關(guān)單的填制教案
- 被壓迫者的教育學(xué)
- 2025年科研倫理與學(xué)術(shù)規(guī)范期末考試試題及參考答案
- 上市公司財(cái)務(wù)舞弊問(wèn)題研究-以國(guó)美通訊為例
- 2025年國(guó)家開(kāi)放電大行管本科《公共政策概論》期末考試試題及答案
- 2024年廣東省春季高考(學(xué)考)語(yǔ)文真題(試題+解析)
- 四川省教育考試院2025年公開(kāi)招聘編外聘用人員筆試考試參考試題及答案解析
- 超市商品陳列學(xué)習(xí)培訓(xùn)
- 2025年中級(jí)煤礦綜采安裝拆除作業(yè)人員《理論知識(shí)》考試真題(含解析)
評(píng)論
0/150
提交評(píng)論