2023年內(nèi)蒙古自治區(qū)呼和浩特市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2023年內(nèi)蒙古自治區(qū)呼和浩特市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2023年內(nèi)蒙古自治區(qū)呼和浩特市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2023年內(nèi)蒙古自治區(qū)呼和浩特市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2023年內(nèi)蒙古自治區(qū)呼和浩特市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年內(nèi)蒙古自治區(qū)呼和浩特市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.

2.

3.A.A.-3/2B.3/2C.-2/3D.2/34.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解5.A.A.5B.3C.-3D.-5

6.

7.

8.()A.A.sinx+C

B.cosx+C

C.-sinx+C

D.-cosx+C

9.

10.鑒別的方法主要有查證法、比較法、佐證法、邏輯法。其中()是指通過尋找物證、人證來(lái)驗(yàn)證信息的可靠程度的方法。

A.查證法B.比較法C.佐證法D.邏輯法

11.

12.設(shè)函數(shù)f(x)=2sinx,則f(x)等于().

A.2sinxB.2cosxC.-2sinxD.-2cosx

13.

14.

15.

16.

17.

18.

19.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。

A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)20.

等于()A.A.

B.

C.

D.0

21.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是

A.

B.f(x)=(x-4)2,x∈[-2,4]

C.

D.f(x)=|x|,x∈[-1,1]

22.按照盧因的觀點(diǎn),組織在“解凍”期間的中心任務(wù)是()

A.改變員工原有的觀念和態(tài)度B.運(yùn)用策略,減少對(duì)變革的抵制C.變革約束力、驅(qū)動(dòng)力的平衡D.保持新的組織形態(tài)的穩(wěn)定

23.

A.f(x)

B.f(x)+C

C.f/(x)

D.f/(x)+C

24.設(shè)D={(x,y){|x2+y2≤a2,a>0,y≥0),在極坐標(biāo)下二重積分(x2+y2)dxdy可以表示為()A.∫0πdθ∫0ar2dr

B.∫0πdθ∫0ar3drC.D.

25.函數(shù)y=f(x)在(a,b)內(nèi)二階可導(dǎo),且f'(x)>0,f"(x)<0,則曲線y=f(x)在(a,b)內(nèi)().

A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸26.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無(wú)窮小B.低階無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小27.()。A.3B.2C.1D.0

28.

29.設(shè)y=x-5,則dy=().A.A.-5dxB.-dxC.dxD.(x-1)dx

30.

A.

B.

C.

D.

31.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

32.()。A.過原點(diǎn)且平行于X軸B.不過原點(diǎn)但平行于X軸C.過原點(diǎn)且垂直于X軸D.不過原點(diǎn)但垂直于X軸

33.

34.

35.設(shè)y=3-x,則y'=()。A.-3-xln3

B.3-xlnx

C.-3-x-1

D.3-x-1

36.過點(diǎn)(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

37.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x

38.

39.設(shè)z=tan(xy),則等于()A.A.

B.

C.

D.

40.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

41.

42.一飛機(jī)做直線水平運(yùn)動(dòng),如圖所示,已知飛機(jī)的重力為G,阻力Fn,俯仰力偶矩M和飛機(jī)尺寸a、b和d,則飛機(jī)的升力F1為()。

A.(M+Ga+FDb)/d

B.G+(M+Ga+FDb)/d

C.G一(M+Gn+FDb)/d

D.(M+Ga+FDb)/d—G

43.A.f(1)-f(0)

B.2[f(1)-f(0)]

C.2[f(2)-f(0)]

D.

44.A.A.

B.

C.

D.

45.

A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

46.

A.-ex

B.-e-x

C.e-x

D.ex

47.

48.

49.

50.

二、填空題(20題)51.設(shè)y=xe,則y'=_________.

52.

53.54.

55.

56.

57.

58.59.設(shè)函數(shù)y=x2+sinx,則dy______.

60.

61.

62.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則63.64.

65.

66.

67.設(shè)z=x3y2,則68.設(shè)z=ln(x2+y),則全微分dz=__________。

69.

70.三、計(jì)算題(20題)71.求曲線在點(diǎn)(1,3)處的切線方程.72.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.73.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

74.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.75.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則76.證明:77.

78.79.將f(x)=e-2X展開為x的冪級(jí)數(shù).80.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

81.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

82.

83.84.85.求微分方程的通解.

86.

87.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

88.求微分方程y"-4y'+4y=e-2x的通解.

89.

90.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.四、解答題(10題)91.

92.判定曲線y=3x3-4x2-x+1的凹向.

93.

94.

95.已知曲線C的方程為y=3x2,直線ι的方程為y=6x。求由曲線C與直線ι圍成的平面圖形的面積S。

96.

97.

98.

99.

100.五、高等數(shù)學(xué)(0題)101.已知函數(shù)

,則

=()。

A.1B.一1C.0D.不存在六、解答題(0題)102.求微分方程y"+9y=0的通解。

參考答案

1.C

2.A

3.A

4.B本題考查的知識(shí)點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).

已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個(gè)解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應(yīng)排除D.又由解的結(jié)構(gòu)定理可知,當(dāng)y1,y2線性無(wú)關(guān)時(shí),C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應(yīng)該選B.

本題中常見的錯(cuò)誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導(dǎo)致的錯(cuò)誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)線性無(wú)關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒有指出)y1,y2為線性無(wú)關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應(yīng)選B.

5.Cf(x)為分式,當(dāng)x=-3時(shí),分式的分母為零,f(x)沒有定義,因此

x=-3為f(x)的間斷點(diǎn),故選C。

6.D

7.D

8.A

9.C

10.C解析:佐證法是指通過尋找物證、人證來(lái)驗(yàn)證信息的可靠程度的方法。

11.C解析:

12.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.

f(x)=2sinx,

f(x)=2(sinx)≈2cosx.

可知應(yīng)選B.

13.A

14.D

15.D解析:

16.D

17.A

18.D

19.A

20.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

由于當(dāng)f(x)可積時(shí),定積分的值為一個(gè)確定常數(shù),因此總有

故應(yīng)選D.

21.C

22.A解析:組織在解凍期間的中心任務(wù)是改變員工原有的觀念和態(tài)度。

23.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.

24.B因?yàn)镈:x2+y2≤a2,a>0,y≥0,令則有r2≤a2,0≤r≤a,0≤θ≤π,所以(x2+y2)dxdy=∫0πdθ∫0ar2.rdr=∫0πdθ∫0ar3.rdr故選B。

25.B解析:本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.

由于在(a,b)內(nèi)f'(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,又由于f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹,可知應(yīng)選B.

26.B

27.A

28.B

29.C本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

因此選C.

30.B

31.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

32.C將原點(diǎn)(0,0,O)代入直線方程成等式,可知直線過原點(diǎn)(或由

33.C解析:

34.C

35.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。

36.A

37.D

38.C

39.B本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)運(yùn)算.

由于z=tan(xy),因此

可知應(yīng)選A.

40.C

41.B

42.B

43.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.

可知應(yīng)選D.

44.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).

可知應(yīng)選C.

45.C

本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

46.C由可變上限積分求導(dǎo)公式有,因此選C.

47.C解析:

48.D解析:

49.D解析:

50.A

51.(x+1)ex本題考查了函數(shù)導(dǎo)數(shù)的知識(shí)點(diǎn)。

52.2

53.1/3本題考查了定積分的知識(shí)點(diǎn)。54.0.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.

通常求解的思路為:

55.11解析:

56.-2y-2y解析:

57.

58.

59.(2x+cosx)dx;本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

解法1利用dy=y'dx.由于y'=(x2+sinx)'=2x+cosx,

可知dy=(2x+cosx)dx.

解法2利用微分運(yùn)算法則dy=d(x2+sinx)=dx2+dsinx=(2x+cosx)dx.

60.0

61.62.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。

如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此63.本題考查的知識(shí)點(diǎn)為重要極限公式。64.由可變上限積分求導(dǎo)公式可知

65.

66.(-∞0]67.12dx+4dy;本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.

由于z=x3y2可知,均為連續(xù)函數(shù),因此

68.

69.

解析:

70.本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.

71.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

72.

73.

74.

75.由等價(jià)無(wú)窮小量的定義可知

76.

77.由一階線性微分方程通解公式有

78.

79.

80.

列表:

說明

81.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

82.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論