版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年吉林省通化市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
3.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx
4.設(shè)函數(shù)f(x)在x=1處可導(dǎo),且,則f'(1)等于().A.A.1/2B.1/4C.-1/4D.-1/2
5.設(shè)y=2x3,則dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
6.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定
7.
8.
9.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]10.設(shè)f'(x)為連續(xù)函數(shù),則等于()A.A.
B.
C.
D.
11.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。
A.0≤α≤φ
B.0≤φ≤α
C.0<α<90。
D.0<φ<90。
12.
13.當(dāng)x→0時(shí),x是ln(1+x2)的
A.高階無窮小B.同階但不等價(jià)無窮小C.等價(jià)無窮小D.低階無窮小
14.
A.
B.
C.
D.
15.
16.方程x2+2y2-z2=0表示的曲面是A.A.橢球面B.錐面C.柱面D.平面
17.政策指導(dǎo)矩陣是根據(jù)()將經(jīng)營(yíng)單值進(jìn)行分類的。
A.業(yè)務(wù)增長(zhǎng)率和相對(duì)競(jìng)爭(zhēng)地位
B.業(yè)務(wù)增長(zhǎng)率和行業(yè)市場(chǎng)前景
C.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與相對(duì)競(jìng)爭(zhēng)地位
D.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與市場(chǎng)前景吸引力
18.A.x2+C
B.x2-x+C
C.2x2+x+C
D.2x2+C
19.
A.(-2,2)
B.(-∞,0)
C.(0,+∞)
D.(-∞,+∞)
20.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1二、填空題(20題)21.設(shè)y=2x+sin2,則y'=______.22.冪級(jí)數(shù)的收斂半徑為______.
23.設(shè)函數(shù)z=x2ey,則全微分dz=______.
24.
25.
26.將積分改變積分順序,則I=______.
27.微分方程y''+6y'+13y=0的通解為______.28.設(shè)f(x,y,z)=xyyz,則
=_________.
29.
30.
31.
32.33.交換二重積分次序∫01dx∫x2xf(x,y)dy=________。34.35.
36.
37.
38.________。39.40.三、計(jì)算題(20題)41.
42.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
44.求微分方程y"-4y'+4y=e-2x的通解.
45.46.47.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
48.
49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
50.
51.證明:52.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.53.求曲線在點(diǎn)(1,3)處的切線方程.54.將f(x)=e-2X展開為x的冪級(jí)數(shù).55.56.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
57.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
58.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.59.
60.求微分方程的通解.四、解答題(10題)61.
62.
63.求,其中區(qū)域D是由曲線y=1+x2與y=0,x=0,x=1所圍成.
64.求由曲線y=cos、x=0及y=0所圍第一象限部分圖形的面積A及該圖形繞x軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vx。
65.(本題滿分8分)
66.
67.
68.
69.
70.求曲線y=x2+1在點(diǎn)(1,2)處的切線方程.并求該曲線與所求切線及x=0所圍成的平面圖形的面積.五、高等數(shù)學(xué)(0題)71.
,求xzx+yzy=_____________。
六、解答題(0題)72.
參考答案
1.A解析:
2.B本題考查了一階線性齊次方程的知識(shí)點(diǎn)。
因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時(shí),f(0)=ln2,所以C=In2,故f(x)=e2xln2.
注:方程y'=2y求解時(shí)也可用變量分離.
3.B
4.B本題考查的知識(shí)點(diǎn)為可導(dǎo)性的定義.
當(dāng)f(x)在x=1處可導(dǎo)時(shí),由導(dǎo)數(shù)定義可得
可知f'(1)=1/4,故應(yīng)選B.
5.B
6.C
7.A解析:
8.B
9.B∵一1≤x一1≤1∴0≤x≤2。
10.C本題考查的知識(shí)點(diǎn)為牛-萊公式和不定積分的性質(zhì).
可知應(yīng)選C.
11.A
12.C解析:
13.D解析:
14.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)運(yùn)算.
因此選D.
15.B解析:
16.B
17.D解析:政策指導(dǎo)矩陣根據(jù)對(duì)市場(chǎng)前景吸引力和經(jīng)營(yíng)單位的相對(duì)競(jìng)爭(zhēng)能力的劃分,可把企業(yè)的經(jīng)營(yíng)單位分成九大類。
18.B本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
因此選B.
19.A
20.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。21.2xln2本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
Y'=(2x+sin2)'=(2x)'+(sin2)'=2xln2.
本題中常見的錯(cuò)誤有
(sin2)'=cos2.
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為一個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
(sin2)'=0.
相仿(cos3)'=0,(ln5)'=0,(e1/2)'=0等.
請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
22.
;
23.dz=2xeydx+x2eydy
24.
解析:
25.
26.
27.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).
28.=xylnx.yz+xy.zyz-1=xyz-1y(ylnx+z)。
29.(-35)(-3,5)解析:
30.極大值為8極大值為8
31.11解析:
32.33.因?yàn)椤?1dx∫x2xf(x,y)dy,所以其區(qū)域如圖所示,所以先對(duì)x的積分為。
34.本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
35.e-2本題考查了函數(shù)的極限的知識(shí)點(diǎn),
36.(12)
37.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.38.139.F(sinx)+C本題考查的知識(shí)點(diǎn)為不定積分的換元法.
由于∫f(x)dx=F(x)+C,令u=sinx,則du=cosxdx,
40.
41.
42.由等價(jià)無窮小量的定義可知
43.
列表:
說明
44.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
45.
46.
47.
48.
則
49.由二重積分物理意義知
50.
51.
52.函數(shù)的定義域?yàn)?/p>
注意
53.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
54.
55.
56.
57.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
58.
59.由一階線性微分方程通解公式有
60.
61.62.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的應(yīng)用.
單調(diào)增加區(qū)間為(0,+∞);
單調(diào)減少區(qū)間為(-∞,0);
極小值為5,極小值點(diǎn)為x=0;
注上述表格填正確,則可得滿分.
這個(gè)題目包含了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性;求函數(shù)的極值與極值點(diǎn);求曲線的凹凸區(qū)間與拐點(diǎn).63.積分區(qū)域D如圖1-4所示。D可以表示為0≤x≤1,0≤y≤1+x2本題考查的知識(shí)點(diǎn)為計(jì)算二重積分,選擇積分次序。如果將二重積分化為先對(duì)x后對(duì)y的積分,將變得復(fù)雜,因此考生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 金屬材涂層機(jī)組操作工操作技能能力考核試卷含答案
- 水工建構(gòu)筑物維護(hù)檢修工安全生產(chǎn)知識(shí)評(píng)優(yōu)考核試卷含答案
- 鋼琴及鍵盤樂器制作工崗前安全文化考核試卷含答案
- 顏料合成工崗前道德考核試卷含答案
- 海信冰箱培訓(xùn)課件
- 冷藏專業(yè)知識(shí)培訓(xùn)課件
- 酒店客房服務(wù)規(guī)范與禮儀制度
- 車站設(shè)備維修保養(yǎng)制度
- 采購(gòu)物資質(zhì)量管理與追溯制度
- 桃花庵歌課件
- 2025-2030共享醫(yī)療檢測(cè)設(shè)備行業(yè)基層醫(yī)療機(jī)構(gòu)合作模式分析報(bào)告
- 食堂餐廳維修項(xiàng)目方案(3篇)
- 醫(yī)用手術(shù)器械講解
- 冰芯氣泡古大氣重建-洞察及研究
- DB37∕T 5031-2015 SMC玻璃鋼檢查井應(yīng)用技術(shù)規(guī)程
- 旅行社計(jì)調(diào)職業(yè)技能模擬試卷含答案
- 口腔腫瘤手術(shù)配合方案
- 新疆金川礦業(yè)有限公司堆浸場(chǎng)擴(kuò)建技改項(xiàng)目環(huán)評(píng)報(bào)告
- 2025至2030年中國(guó)武漢餐飲行業(yè)市場(chǎng)現(xiàn)狀調(diào)查及發(fā)展趨向研判報(bào)告
- JG/T 155-2014電動(dòng)平開、推拉圍墻大門
- 模特外包服務(wù)合同協(xié)議書
評(píng)論
0/150
提交評(píng)論