第11章+靜電場中的導體和電介質2-電介質_第1頁
第11章+靜電場中的導體和電介質2-電介質_第2頁
第11章+靜電場中的導體和電介質2-電介質_第3頁
第11章+靜電場中的導體和電介質2-電介質_第4頁
第11章+靜電場中的導體和電介質2-電介質_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

除導體外,凡是在電場中能與電場發(fā)生相互作用的物質,都可稱為電介質。主要特征:電介質分子中的正負電荷束縛得很緊,介質內部幾乎沒有自由電荷。理想的電介質是很好的絕緣體。11.2靜電場中的電介質電介質受外電場的作用出現(xiàn)束縛(極化)電荷,達到平衡時,電介質內部的場強減弱。11.2.1電介質的電結構(1)真空中一對金屬導體板,分別帶電+q

和-q

,相距d。(2)保持q

和d

不變,插入一塊電介質(P49表

)測得兩板的電壓為U0,即板內的場強為:+q-qE0即場強:+q-qE測得兩板的電壓:結論:由于電介質的放入,內部的電場減弱了。r:電介質的相對介電常數(shù)。(11-3)實驗:每一分子都有正電中心和負電中心,正負電荷電量相等,相當于一個電偶極子。電介質可分為兩類:分子的正、負電荷中心重合。分子不存在固有電偶極矩(2)無極分子(如H2、O2、CO2等):C4+O2-O2-CO2分子的正、負電中心不重合,分子存在固有電偶極矩(1)有極分子(如H2O、HCl等):-q+q=O--H+H+H2O+=±分子電矩(1)無極分子的位移極化±±±±±±±±±±±±±±±E0電介質的極化:在外電場的作用下,介質表面產(chǎn)生束縛(極化)電荷的現(xiàn)象。11.2.2電介質在外電場中的極化現(xiàn)象

無極分子在外場的作用下,正負電荷中心發(fā)生偏移而產(chǎn)生的極化稱為位移極化。束縛(極化)電荷:電荷被束縛在分子范圍內,不能作宏觀移動。也不能用傳導的方法引走。感生電矩與外場同向+-+-+-+-+-+-+-+-+-+-+-+-(2)有極分子的轉向極化+-+-+-+-+-+-+-+-+-+-+-+-EoFF有極分子在外電場中發(fā)生偏轉而產(chǎn)生的極化稱為轉向極化。

外場越強,排列越整齊。

極化的結果:對各向同性的均勻的電介質(有極、無極)

內部無凈電荷;

表面產(chǎn)生束縛電荷,外電場越強,束縛電荷越多。+-+-+-+-+-+-+-+-+-+-+-+-從宏觀看,在外電場的作用下,介質表面產(chǎn)生束縛電荷。+-Eo電介質的擊穿當外電場很強時,電介質中的正負電荷可能被拉開,變成自由電荷,則絕緣體變成了導體。這種現(xiàn)象稱為電介質的擊穿。電介質在電容器中的作用:

(1)增大電容的值;(2)增大耐壓。由擊穿強度可計算電容器的耐壓,P49表11-1介電質的絕緣強度(擊穿強度Em

):電介質材料所能承受的不被擊穿的最大電場強度。

Em如平板電容器的耐壓:Um=Emd11.3

有電介質時的靜電場和高斯定理11.3.1有電介質時的靜電場介質內的場強:為束縛電荷產(chǎn)生的場強,方向和外場相反,所以介質內場強減弱。解釋:電介質的放入,內部的電場減弱E<E0E=E0–E’

---+++11.3.2有電介質時靜電場的高斯定理電位移矢量介質中的束縛(極化)電荷q,和電場互相牽制,一般無法預知。也無法用實驗測到。在電介質中,高斯定理應為:真空中的高斯定理:以半徑為R,電荷為q

的孤立導體球為例:在真空中:在球外充滿相對介電常數(shù)為r的無限大均勻電介質。在電介質的表面會產(chǎn)生極化電荷q電場:q為自由電荷Rrqq'得:束縛電荷各向同性線性電介質令電位移矢量:D的高斯定理:在靜電場中,通過任意閉合曲面S的電位移通量等于該閉合曲面所包圍的自由電荷的代數(shù)和。單位:C/m2Rrqq'說明:(1)介質中的高斯定理也是普遍適用的。

(3)介質中的高斯定理包含了真空中的高斯定理:

(2)電位移矢量是一個輔助量。描寫電場的基本

物理量是電場強度。真空中:(4)電介質中靜電場的環(huán)路定理的形式不變:

E是自由電荷和束縛電荷產(chǎn)生的總的電場強度。(1)利用電荷分布的對稱性,根據(jù)D的高斯定理求出電位移的分布:(2)由電場強度與電位移的關系計算場強:*(4)束縛電荷計算:(3)電勢與電場強度的關系:11.3.3有介質時靜電場的高斯定理的應用例1:自由電荷面密度為

的平行金屬板之間充滿相對介電常數(shù)為r

的均勻電介質,求電位移D,電場強度E和介質表面的束縛電荷面密度’為多少?解:

D由介質中的高斯定理+++++++-------------++++++-’+’P52例11-2同軸圓柱面之間的場強和電勢差。(1)求D(2)求E(3)求VABrl11.4

電容電容器11.4.1孤立導體的電容R設半徑為R

的導體球帶電q,電勢為:則:孤立導體球的電容:電容是導體的一個重要特性。先討論孤立導體的電容:導體的電荷量q

與相應的的電勢V

成正比,q

是一個與導體的電荷量無關的常數(shù)。C=4π0R11.4.2電容器的電容實際使用的電容器是由中間被真空或電介質隔開的兩個導體(兩極)的組合。當兩極帶上等量異號的電量q

時,兩極的電勢差為VA

-VB

,與q成正比。電容C反映了電容器容納電荷和儲存電能的能力:對于一定的電壓,電容越大,帶電量就越大,儲存的電能也越大。定義電容器的電容:法拉(F)

步驟:(1)假設兩極分別帶電q,計算兩極板間的場強E的分布;(2)

計算兩極板之間的電勢差:(3)由電容器電容的定義計算C

:(結果和q

無關)電容器電容C的計算1、平行板電容器(已知S,d,)-q+qE設兩極分別帶電q,則內部場強:平板電容器的電容與面積成正比,與間距成反比,還與電介質有關。平行板電容器的電容:dS+++++-----當其間充滿均勻電介質后,電容C

增大至真空時的r

倍。2、球形電容器(已知R1,R2,)R1R2設內、外球面分別帶電q,則兩極間的場強:球形電容器的電容:半徑為R1的孤立導體球的電容:球形電容器的電容比孤立導體球的電容大3、圓柱形電容器(已知R1,R2,L,)設內、外極板分別帶電q,則兩極之間的場強:圓柱形電容器的電容:LR1R2r平板電容器耐壓計算:Um=Emd

Em是電介質的擊穿強度4、電容器的耐壓電容器的耐壓和電介質的擊穿場強有關(P49表11-1)+++++-----d-q+qEm例:圓柱形電容器耐壓計算解:設正負極最大的帶電量分別為m,兩極之間的電場強度分布為電介質的內側先被擊穿球形電容器耐壓計算?(Em是電介質的擊穿強度)

則電場分布:耐壓:R1R2(1)電容器的串聯(lián)等效電容:結論:串聯(lián)電容器的等效電容的倒數(shù)等于各電容器的電容的倒數(shù)之和。串聯(lián)時,耐壓增大,但總電容減小。C1C2CnU11.4.3電容器的串聯(lián)和并聯(lián)實際電路中經(jīng)常用電容器的并聯(lián)和串聯(lián)來達到一定的電容值和所需的耐壓。等效電容:結論:并聯(lián)電容器的等效電容等于各電容器電容之和。(2)電容器的并聯(lián)總電量:并聯(lián)時,總電容增大,但耐壓受到限制。C1C2C3U例:三個電容器C1=20F,C2=40F,C3=60F。(1)求總電容。(2)如在AB間加電壓220V,則各電容器上的電壓和電量各是多少?C1C2C3AB解:(1)(2)總電容:P59例11-5(自學)

P56例11-3:一平行板電容器,中間有兩層厚度分別為d1和d2的電介質,它們的介電常數(shù)為1和2,極板面積為S。求電容C。

2d1d2解:設兩板分別帶電q,

由高斯定理得:也可用電容器的串聯(lián)來解。1+q-q例:一平行板電容器,極板面積為S,間距為d。有兩層電介質,面積各占S/2,介電常數(shù)為1和2,求電容C。解:設兩板電勢差為U

21+1+2-1-2也可用電容器的并聯(lián)來解。P57例11-4(自學)

分布電容11.5電場的能量充了電的電容器儲存了電能,這電能來自電源。帶電量為q

的電容器儲存的電能為:

q-q推導:電容器在充電過程中(0~q),外力對電荷所作的功等于電容器儲存的電能。1、帶電電容器的電能(q=CU)所以,電容器儲存的靜電能:設t時刻電量為qi,這時電勢差:在dt

時間內,又有

dqi

的正電荷在外力作用下,從電容器的負極B移到了正極A,外力作功:在整個充電過程中(0~q),外力作的總功為:qi-qiui+dqi電源BA有電介質存在時,電容器中總能量(1)二電容器并聯(lián)時:(2)二電容器串聯(lián)時:C0

CC0

C在帶電量相同的情況下,充電介質時的能量是真空時的1/r倍在電勢差相同的情況下,充電介質時的能量是真空時的r倍例:以平板電容器為例,能量儲存在電場中(

=Sd

為電場空間的體積)電場的能量密度(單位體積電場的能量):上式電場能量密度公式普遍適用。-q--------+q++++++++SEd2、靜電場的能量(1)對于均勻電場:(2)對于任意帶電體產(chǎn)生的電場:積分遍及整個電場空間球對稱電場:柱對稱電場:靜電場總能量的計算:電場的能量密度P61例11-6P62例11-7

圖C1C2對調表示總體積例1:由電場的能量公式求圓柱形電容器帶電Q

時儲存的靜電能。由電容器儲能公式求電容器的電容值。(2)LR1R2rdr例2:在真空中一均勻帶電球體,半徑為R,總電量為q,試利用電場能量公式求此帶電系統(tǒng)的靜電能。(設介電常數(shù)為0)。解:

qRrdr例3:內外半徑分別為R1和R2的圓柱形電容器(R2<2R1),中間充以兩種不同介質,相對介電常數(shù)分別為r1和r2(r2=r1/2),分界面半徑為r0,兩介質的擊穿電場強度都是EM,問:當電壓升高時,哪層介質先被擊穿?最大電壓為多少?LR1R2r0解:(1)設內筒帶電λ,則所以外層電介質先擊穿。(2)代入到LR1R2r0r2=r1/2作業(yè):P649,11,14,16,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論