版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
mechanicalengineeringAnintroductionto1Lecturer:LiuJu-rongCHAPTER4ForcesinStructuresOVERVIEW1FORCESANDRESULTANTS23MOMENTOFAFORCE
2EQUILIBRIUMOFFORCESANDMOMENTS4Vocabulary3Mechanics力學neteffect凈效應leverarm桿臂Quadrant象限Bracket支架Protractor量角器Eyebolt吊環(huán)螺栓pivotpoint支點Particle質(zhì)點RigidBody剛體FreeBodyDiagram自由體受力圖boldfacenotation粗體字的標識1OVERVIEW4Mechanicalengineersusemathematicsandphysicallawstodesignhardwarebetterandfasterthanwouldbepossibleotherwise.Byapplyingtheprincipleofforcebalance,forinstance,anengineercanoftenanalyzeadesigntoareasonablelevelofaccuracybeforeanyhardwareisbuilt.Engineersreducethetimeandexpenseassociatedwithconstructingandtestingprototypesbyfirstrefiningtheirdesignsonpaper.Computer-aidedengineeringtoolsfurtherincreasethelevelofsophisticationthatisavailableforsuchanalyses.1OVERVIEW---Theabilitytobeavailableinthischapter5Afterstudy,whatshouldyoubeabletohave?Describeaforceintermsofitsrectangularandpolarcomponents.Calculatetheresultantofasystemofforcesbyusingthevectoralgebraandpolygonmethods.Calculatethemomentofaforceaboutapointusingtheperpendicularleverarmandmomentcomponentmethods.Understandtherequirementsforequilibrium,andcalculateunknownforces.Explainthedifferencebetweenlaminarandturbulentflowingfluids.CalculateanddescribethedimensionlessReynoldsandMachnumbers.Discussthefluidforcesknownasbuoyancy,drag,andlift,andcalculatethemincertainapplication.1OVERVIEW6FINGURE4.1Heavyconstructionequipmentisdesignedtosupportthelargeforcesdevelopedduringoperation.Source:ReprintedwithpermissionofmechanicalDynamics,Incorporated,andbyCaterpillarIncorporated.2FORCESANDRESULTANTS---RectangularandPolarForms
Whatisvectornotation?
Rectangularcomponents7Inthistextbook,wewilluseboldfacenotation--F--todenoteforcevectors.Acommonmethodtodescribeaforceisintermsofitshorizontalandverticalcomponents.TheprojectionofFinthehorizontaldirection(thexRectangularaxis)iscalledFx,andtheverticalprojection(yaxis)iscalledFy.Infact,thepairofnumbers(Fx,Fy)isjustthecoordinatesoftheforcevector'stip.2FORCESANDRESULTANTS---RectangularandPolarForms
Unitvectors8theunitvectorsiandjareusedtoindicatethedirectionsinwhichFxandFyact.Vectoripointsalongthepositivexdirection,andjisavectorpointinginthepositiveydirection.F=Fxi+FyjFINGURE4.2Representingaforcevectorintermsofitsrectangularcomponents(Fx,Fy),anditspolarcomponents(F,θ).2FORCESANDRESULTANTS---RectangularandPolarForms
polarcomponentsVectormagnitude9Thelatterviewpointisbasedonpolarcoordinates.AsalsoshowninFigure,Factsattheangleθ,whichismeasuredrelativetothehorizontalaxis.Themagnitudeorlengthoftheforcevectorisascalarquantity,anditisdenotedbyF=|F|,wherethe|·|notationdesignatesthevector'sabsolutevalue.VectordirectionInsteadofspecifyingFxandFy,wecannowviewVectordirectiontheforcevectorFintermsofthequantitiesFandθ.Fx=FcosθandFy=Fsinθ
2FORCESANDRESULTANTS---RectangularandPolarForms10FINGURE4.3Determiningtheangleofactionforaforcethat(a)liesinthefirstquadrantand(b)liesinthesecondquadrant.2FORCESANDRESULTANTS---Resultants
Forcesystem11Aforcesystemisacollectionofseveralforcesthatsimultaneouslyactonanobject.WithNindividualforcesdenotedbyFi(i=1,2,…,N),theyaresummedaccordingtobyusingtherulesofvectoralgebra.Resultant2FORCESANDRESULTANTS---Resultants
vectoralgebramethod12Inthistechnique,eachforceFiisbrokendownintoitshorizontalandverticalcomponents,whichwelabelasFxiandFyifortheit’sforce.Theresultant'shorizontalcomponentRxisfoundbyLikewise,weseparatelysumtheverticalcomponentsthroughTheresultantforceisthenexpressedasR=Rxi+Ryj.IfweareinterestedinthemagnitudeRanddirectionθofR,weapplytheexpressions2FORCESANDRESULTANTS---Resultants
VectorpolygonMethod----head–to–tailrule13Alternatively,theresultantofaforcesystemcanbefoundbysketchingapolygontorepresentadditionoftheFivectors.Themagnitudeanddirectionoftheresultantarethendeterminedbyapplyingrulesoftrigonometrytothepolygon'sgeometry.ReferringtothemountingpostofFigure4.4,thevectorpolygonforthosethreeforcesisdrawnbyaddingtheindividualFi'sinachainHead-to-tail(頭尾相接)ruleaccordingtothehead-to-tailrule.2FORCESANDRESULTANTS---Resultants14FINGURE4.4Amountingpostandbracketthatareloadedbythreeforces.FINGURE4.5ThebracketRextendsfromthestarttotheendofthechainformedbyaddingF1,F2andF3together3MOMENTOFAFORCE---perpendicularleverarm15Thetermtorquecanalsobeusedtodescribetheeffectaforceactingoveraleverarm,butmechanicalengineersgenerallyreservetorquetodescribemomentsthatcauserotationofashaftinamotor,engine,orgearbox.
ThemagnitudeofamomentisfoundfromitsdefinitionMo=Fdanddistheperpendicularleverarmdistancefromtheforce'slineofactiontopointO.
momentmagnitude
leverarm
torque3MOMENTOFAFORCE---perpendicularleverarm16theunitforMoistheproductofforceanddistance.Infact,Fcouldbeappliedtothebracketatanypointalongitslineofaction,andthemomentproducedaboutOwouldremainunchangedbecausedwouldlikewisenotchange.MomentunitsLineofaction3MOMENTOFAFORCE---momentcomponents17Wefirstchoosethefollowingsignconvention:Amomentthatisdirectedclockwiseispositive,andacounterclockwisemomentisnegative.Thesignconventionisjustabookkeepingtoolforcombiningthevariousclockwiseandcounterclockwisemomentcomponents.Signconvection3MOMENTOFAFORCE---momentcomponents18FINGURE4.11Calculatingmomentsbasedoncomponents.(a)BothFxandFycreateclockwisemomentsaboutpointO.(b)Fxexertsaclockwisemoment,butFyexertsacounterclockwisemoment.3MOMENTOFAFORCE---momentcomponents19Regardlessofwhichmethodyouusetocalculateamoment,whenreportinganansweryoushouldstate(1)thenumericalmagnitudeofthemoment,(2)theunits,and(3)thedirection.(CWorCCW)Inthegeneralcaseofthemomentcomponentsmethod,wewriteMo=±Fx?y±Fy?x20thephysicaldimensionsoftheobjectareunimportantincalculatingforces.thelength,width,andbreadthofanobjectareimportantfortheproblemathand.particlerigidbody4EQUILIBRIUMOFFORCESANDMOMENTS--ParticlesandRigidBodies21Aparticleisinequilibriumiftheforcesactingonitbalancewithzeroresultant.Becauseforcescombineasvectors,theresultantmustbezerointwoperpendiculardirections,whichwelabelxandy:Forarigidbodytobeinequilibrium,itisnecessarythat(1)theresultantofallforcesiszero,and
(2)thenetmomentisalsozero.ForcebalanceMomentbalance4EQUILIBRIUMOFFORCESANDMOMENTS--ParticlesandRigidBodies∑Fxi=0and∑Fyi=0∑Fxi=0and∑Fyi=0∑Moi=0Itisnotpossibletoobtainmoreindependentequationsofequilibriumbyresolvingmomentsaboutanalternativepointorbysummingforcesindifferentdirections.22Freebodydiagrams(abbreviatedFBD)aresketchesusedtoanalyzetheforcesandmomentsthatactonstructuresandmachines,andtheirconstructionisanimportantskill.TheFBDisusedtoidentifythemechanicalsystemthatisbeingexaminedandtorepresentalloftheknownandunknownforcesthatarepresent.FBD4EQUILIBRIUMOFFORCESANDMOMENTS–Freebodydiagrams23thephysicaldimensionsoftheobjectareunimportantincalculatingforces.thelength,width,andbreadthofanobjectareimportantfortheproblemathand.particlerigidbody4EQUILIBRIUMOFFORCESANDMOMENTS–FreeBodyDiagrams4EQUILIBRIUMOFFORCESANDMOMENTS–FreeBodyDiagrams24ThreemainstepsarefollowedwhenaFBDisdrawn:3.Inthefinalstep,allforcesandmomentsaredrawnandlabeled.2.Thecoordinatesystemisdrawnnexttoindicatethepositivesignconventionsforforcesandmoments.1.Selectanobjectthatwillbeanalyzedbyusingtheequilibriumequations.Imaginethatadottedlineisdrawnaroundtheobject,andnotehowthelinewouldcutthroughandexposevariousforces.4EQUILIBRIUMOFFORCESANDMOMENTS–FreeBodyDiagrams25SOLUTION(a)ThefreebodydiagramofthebuckleisshowninFigure4.15(b).Thexycoordinatesystemisalsodrawntoindicateoursignconventionforthepositivehorizontalandverticaldirections.Threeforcesactonthebuckle:thetwogiven300-1bforcesandtheunknownforceintheanchorstrap.Forthebuckletobeinequilibrium,thesethreeforcesmustbalance.AlthoughboththemagnitudeTanddirection0oftheforceinstrapABareunknown,bothquantitiesareshownonthefreebodydiagramforcompleteness.EXAMPLEDuringcrashtestingofanautomobile,thelapandshoulderseatbeltseachbecometensionedto300lb,asshowninFigure4.15(a).TreatingthebuckleBasaparticle,(a)drawafreebodydiagram,(b)determinethetensionTintheanchorstrapAB,and(c)determinetheangleatwhichTacts.4EQUILIBRIUMOFFORCESANDMOMENTS–FreeBodyDiagrams26FINGURE4.15EquilibriumanalysisoftheseatbeltlatchinExample4.5.4EQUILIBRIUMOFFORCESANDMOMENTS–FreeBodyDiagrams27(b)Wesumthethreeforcesbyusingthevectorpolygonapproach,asshowninFigure4.15(c).Thepolygon'sstartandendpointsarethesamebecausethethreeforcesactingtogetherhavezeroresultant;thatis,thedistancebetweenthepolygon'sstartandendpointsiszero.Thetensionisdeterminedbyapplyingthelawofcosines(equationsforobliquetrianglesarereviewedinAppendixB)totheside-angle-sidetriangleinFigure4.15(c):T2=(300lb)2+(300lb)2-2(300lb)(300lb)cos120ofromwhichwecalculateT=519.6lb.(c)Theanchorstrap'sangleisfoundfromthelawofsines:
andθ=30o.SUMMARY28Inthischapter,weintroducedtheengineeringscienceconceptsofforces,resultants,moments,andequilibrium.Weexaminedthosequantitiesinthecontextofforcesactingonmachines
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- (2025年)傳染病疫情報告培訓試題附答案
- 2025至2030中國自動駕駛測試場地分布與區(qū)域發(fā)展不平衡問題報告
- 2026年叉車在線理論考試題庫及答案參考
- 2025-2030中國健康觀察行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2026年銀河駕校叉車考試題庫及一套答案
- 2025-2030亞太區(qū)域數(shù)字經(jīng)濟技術應用現(xiàn)狀分析深度研究報告市場預測
- 2025-2030東南紡織服裝行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030東南沿海地區(qū)智能醫(yī)療設備行業(yè)市場發(fā)展現(xiàn)狀分析及投資評估規(guī)劃報告
- 2026福建福州市鼓樓區(qū)衛(wèi)健系統(tǒng)(第一批)招聘編外人員24人備考題庫及一套完整答案詳解
- 2025-2030東京鋼鐵行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 外研版(三起)五年級英語上冊教學計劃(含進度表)
- 新課標小學語文六年級下冊全冊核心素養(yǎng)教案(教學設計)
- 教科版九年級物理上冊專項突破提升檢測(四)電磁學實驗及作圖含答案
- 解決勞資糾紛與調(diào)解制度
- 護理個人先進
- DB34-T 4877-2024 智慧檢驗檢測實驗室建設指南
- GB/T 32399-2024信息技術云計算參考架構(gòu)
- 食堂設備使用及保養(yǎng)培訓
- 村莊異地搬遷安置點項目可行性研究報告
- 《正常人體形態(tài)學》考試復習題庫大全(含答案)
- 抗洪搶險先進事跡2023
評論
0/150
提交評論