版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)量關(guān)系
—第7章第一部分向量代數(shù)第二部分空間解析幾何
在三維空間中:空間形式
—
點(diǎn),
線,
面基本方法
—
坐標(biāo)法;向量法坐標(biāo),方程(組)向量代數(shù)與空間解析幾何四、利用坐標(biāo)作向量的線性運(yùn)算第一節(jié)一、向量的概念二、向量的線性運(yùn)算三、空間直角坐標(biāo)系五、向量的模、方向角、投影向量及其線性運(yùn)算
第七章表示法:向量的模:向量的大小,一、向量的概念向量:(又稱(chēng)矢量).既有大小,又有方向的量稱(chēng)為向量自由向量:與起點(diǎn)無(wú)關(guān)的向量.單位向量:模為1的向量,零向量:模為0的向量,有向線段M1
M2,或a,記作e
或e.或a.規(guī)定:零向量與任何向量平行;若向量a與b大小相等,方向相同,則稱(chēng)a與b相等,記作a=b;若向量a與b方向相同或相反,則稱(chēng)a與b平行,
a∥b;與a
的模相同,但方向相反的向量稱(chēng)為a
的負(fù)向量,記作因平行向量可平移到同一直線上,故兩向量平行又稱(chēng)兩向量共線
.若k(≥3)個(gè)向量經(jīng)平移可移到同一平面上,則稱(chēng)此k個(gè)向量共面
.記作-a;二、向量的線性運(yùn)算1.向量的加法三角形法則:平行四邊形法則:運(yùn)算規(guī)律:交換律結(jié)合律三角形法則可推廣到多個(gè)向量相加.2.向量的減法三角不等式可見(jiàn)3.向量與數(shù)的乘法
是一個(gè)數(shù),規(guī)定:總之:運(yùn)算律:結(jié)合律分配律因此
與a
的乘積是一個(gè)新向量,記作定理1.
設(shè)
a
為非零向量,則(為唯一實(shí)數(shù))a∥b例1.
設(shè)M
為解:ABCD對(duì)角線的交點(diǎn),ⅦⅡⅢⅥⅤⅧⅣ三、空間直角坐標(biāo)系由三條互相垂直的數(shù)軸按右手規(guī)則組成一個(gè)空間直角坐標(biāo)系.
坐標(biāo)原點(diǎn)
坐標(biāo)軸x軸(橫軸)y軸(縱軸)z
軸(豎軸)過(guò)空間一定點(diǎn)O,
坐標(biāo)面
卦限(八個(gè))1.空間直角坐標(biāo)系的基本概念ⅠzOx面在直角坐標(biāo)系下向徑坐標(biāo)軸上的點(diǎn)
P,Q,R;坐標(biāo)面上的點(diǎn)A,B,C點(diǎn)
M特殊點(diǎn)的坐標(biāo):有序數(shù)組(稱(chēng)為點(diǎn)
M
的坐標(biāo))原點(diǎn)O(0,0,0);坐標(biāo)軸:坐標(biāo)面:2.向量的坐標(biāo)表示在空間直角坐標(biāo)系下,設(shè)點(diǎn)
M
則沿三個(gè)坐標(biāo)軸方向的分向量,的坐標(biāo)為此式稱(chēng)為向量
r
的坐標(biāo)分解式
,任意向量r
可用向徑OM
表示.記四、利用坐標(biāo)作向量的線性運(yùn)算則平行向量對(duì)應(yīng)坐標(biāo)成比例:設(shè)例2.已知兩點(diǎn)在AB所在直線上求一點(diǎn)M,使解:
設(shè)M
的坐標(biāo)為如圖所示及實(shí)數(shù)得即說(shuō)明:由得定比分點(diǎn)公式:點(diǎn)
M為AB
的中點(diǎn),于是得中點(diǎn)公式:五、向量的模、方向角、投影1.向量的模與兩點(diǎn)間的距離公式則有由勾股定理得因得兩點(diǎn)間的距離公式:對(duì)兩點(diǎn)與例3.
求證以證:即為等腰三角形.的三角形是等腰三角形.為頂點(diǎn)例4.
在z
軸上求與兩點(diǎn)等距解:
設(shè)該點(diǎn)為解得故所求點(diǎn)為及思考:(1)如何求在
xOy
面上與A,B
等距離之點(diǎn)的軌跡方程?(2)如何求在空間與A,B
等距離之點(diǎn)的軌跡方程?離的點(diǎn).(1)如何求在
xOy
面上與A,B
等距離之點(diǎn)的軌跡方程?(2)如何求在空間與A,B
等距離之點(diǎn)的軌跡方程?提示:(1)設(shè)動(dòng)點(diǎn)為利用得(2)設(shè)動(dòng)點(diǎn)為利用得且例5.已知兩點(diǎn)解:求AB的單位向量e.2.方向角與方向余弦設(shè)有兩非零向量任取空間一點(diǎn)O,稱(chēng)=∠AOB(0≤≤
)
為向量
的夾角.類(lèi)似可定義向量與軸,軸與軸的夾角.與三坐標(biāo)軸的夾角
,,為其方向角.方向角的余弦稱(chēng)為其方向余弦.
方向余弦的性質(zhì):例6.已知兩點(diǎn)和的模、方向余弦和方向角.解:計(jì)算向量3.向量在軸上的投影第二節(jié)則
a
在軸u
上的投影為例如,在坐標(biāo)軸上的投影分別為設(shè)a
與u
軸正向的夾角為
,,即投影的性質(zhì)2)1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 球囊擴(kuò)張支架在卒中治療中的應(yīng)用
- 深度解析(2026)《GBT 19323-2003涂附磨具 帶除塵孔砂盤(pán)》
- 鄉(xiāng)村振興部-鄉(xiāng)村振興專(zhuān)員面試題及答案
- 物流管理助理面試題及應(yīng)對(duì)策略
- 教育行業(yè)教師招聘技能考核題目
- 安全檢查設(shè)備建設(shè)項(xiàng)目可行性分析報(bào)告(總投資17000萬(wàn)元)
- 銷(xiāo)售代表業(yè)績(jī)考核與評(píng)價(jià)標(biāo)準(zhǔn)
- 深度解析(2026)《GBT 18991-2003冷熱水系統(tǒng)用熱塑性塑料管材和管件》(2026年)深度解析
- 壓力表項(xiàng)目可行性分析報(bào)告范文(總投資17000萬(wàn)元)
- 感光探測(cè)器項(xiàng)目可行性分析報(bào)告范文(總投資10000萬(wàn)元)
- 電力行業(yè)電力工程設(shè)計(jì)師崗位招聘考試試卷及答案
- 2025年北京市建筑施工作業(yè)人員安全生產(chǎn)知識(shí)教育培訓(xùn)考核試卷E卷及答案
- 2025急性高甘油三酯血癥胰腺炎康復(fù)期多學(xué)科管理共識(shí)解讀
- 2025年事業(yè)單位面試熱點(diǎn)題目及答案解析
- 湖北省宜昌市秭歸縣2026屆物理八年級(jí)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析
- 采用煙氣擋板法再熱汽溫控制系統(tǒng)的研究
- 工程竣工預(yù)驗(yàn)收會(huì)議紀(jì)要模板
- 2025秋期版國(guó)開(kāi)電大本科《理工英語(yǔ)4》一平臺(tái)綜合測(cè)試形考任務(wù)在線形考試題及答案
- 安全生產(chǎn)法(2025年修訂版)
- 乒乓球培訓(xùn)合同7篇
- 旅游包車(chē)安全知識(shí)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論