2022-2023學(xué)年廣東省汕頭市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022-2023學(xué)年廣東省汕頭市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022-2023學(xué)年廣東省汕頭市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022-2023學(xué)年廣東省汕頭市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022-2023學(xué)年廣東省汕頭市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年廣東省汕頭市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.設(shè)函數(shù)y=2x+sinx,則y'=

A.1+cosxB.1-cosxC.2+cosxD.2-cosx

2.

3.A.1/2f(2x)+CB.f(2x)+CC.2f(2x)+CD.1/2f(x)+C

4.微分方程y'=x的通解為A.A.2x2+C

B.x2+C

C.(1/2)x2+C

D.2x+C

5.

6.微分方程y'+y=0的通解為y=A.e-x+C

B.-e-x+C

C.Ce-x

D.Cex

7.()工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開(kāi)和細(xì)化。

A.計(jì)劃B.組織C.控制D.領(lǐng)導(dǎo)

8.當(dāng)x→0時(shí),x+x2+x3+x4為x的

A.等價(jià)無(wú)窮小B.2階無(wú)窮小C.3階無(wú)窮小D.4階無(wú)窮小

9.

10.

11.A.0

B.1

C.e

D.e2

12.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量

13.

14.

15.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)

則x=0是f(x)的()。

A.間斷點(diǎn)B.極大值點(diǎn)C.極小值點(diǎn)D.拐點(diǎn)16.冪級(jí)數(shù)的收斂半徑為()A.1B.2C.3D.417.A.A.x2+cosy

B.x2-cosy

C.x2+cosy+1

D.x2-cosy+1

18.設(shè)函數(shù)f(x)在點(diǎn)x0。處連續(xù),則下列結(jié)論正確的是().A.A.

B.

C.

D.

19.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面20.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C二、填空題(20題)21.設(shè)y=,則y=________。22.

23.

24.25.

26.

27.28.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。29.設(shè)區(qū)域D由y軸,y=x,y=1所圍成,則.

30.若函數(shù)f(x)=x-arctanx,則f'(x)=________.

31.

32.

33.

34.

35.

36.37.設(shè)y=3x,則y"=_________。38.

39.

40.三、計(jì)算題(20題)41.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).42.43.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.44.求微分方程的通解.45.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

46.

47.

48.

49.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).

50.求微分方程y"-4y'+4y=e-2x的通解.

51.

52.

53.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.54.

55.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

56.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.58.證明:59.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)61.

62.

63.64.計(jì)算

65.

66.設(shè)z=z(x,y)由ez-xyz=1所確定,求全微分dz。

67.

68.求∫xsin(x2+1)dx。

69.用鐵皮做一個(gè)容積為V的圓柱形有蓋桶,證明當(dāng)圓柱的高等于底面直徑時(shí),所使用的鐵皮面積最小。70.五、高等數(shù)學(xué)(0題)71.

,求xzx+yzy=_____________。

六、解答題(0題)72.設(shè)

參考答案

1.D本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=2x+sinx,則y'=2+cosx.

2.B

3.A本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。

4.C

5.A

6.C

7.A解析:計(jì)劃工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開(kāi)和細(xì)分。

8.A本題考查了等價(jià)無(wú)窮小的知識(shí)點(diǎn)。

9.B

10.A

11.B為初等函數(shù),且點(diǎn)x=0在的定義區(qū)間內(nèi),因此,故選B.

12.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.

13.B

14.B

15.C則x=0是f(x)的極小值點(diǎn)。

16.A由于可知收斂半徑R==1.故選A。

17.A

18.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系.由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確.由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確.

19.C本題考查的知識(shí)點(diǎn)為二次曲面的方程。

將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對(duì)照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。

20.C

21.22.1/2

本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.

其積分區(qū)域如圖1—1陰影區(qū)域所示.

可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.

解法1

解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.

作平行于y軸的直線(xiàn)與區(qū)域D相交,沿Y軸正向看,人口曲線(xiàn)為y=x,作為積分下限;出口曲線(xiàn)為y=1,作為積分上限,因此

x≤y≤1.

區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此

0≤x≤1.

可得知

解法3化為先對(duì)x積分,后對(duì)y積分的二次積分.

作平行于x軸的直線(xiàn)與區(qū)域D相交,沿x軸正向看,入口曲線(xiàn)為x=0,作為積分下限;出口曲線(xiàn)為x=y(tǒng),作為積分上限,因此

0≤x≤y.

區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此

0≤y≤1.

可得知

23.

24.125.ln(1+x)+C本題考查的知識(shí)點(diǎn)為換元積分法.

26.

27.e-228.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx29.1/2本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.

可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.

解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.

解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.

作平行于y軸的直線(xiàn)與區(qū)域D相交,沿y軸正向看,入口曲線(xiàn)為y=x,作為積分下限;出口曲線(xiàn)為y=1,作為積分上限,因此

x≤y≤1.

區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此

0≤x≤1.

可得知

解法3化為先對(duì)x積分,后對(duì)Y積分的二次積分.

作平行于x軸的直線(xiàn)與區(qū)域D相交,沿x軸正向看,入口曲線(xiàn)為x=0,作為積分下限;出口曲線(xiàn)為x=y,作為積分上限,因此

0≤x≤y.

區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此

0≤y≤1.

可得知

30.x2/(1+x2)本題考查了導(dǎo)數(shù)的求導(dǎo)公式的知識(shí)點(diǎn)。

31.1/3本題考查了定積分的知識(shí)點(diǎn)。

32.2

33.y=Cy=C解析:

34.

35.22解析:

36.37.3e3x

38.

39.

40.

41.

42.43.函數(shù)的定義域?yàn)?/p>

注意

44.45.由等價(jià)無(wú)窮小量的定義可知

46.

47.由一階線(xiàn)性微分方程通解公式有

48.

49.

列表:

說(shuō)明

50.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

51.

52.

53.

54.

55.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

56.

57.

58.

59.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.

因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)

(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為

60.由二重積分物理意義知

61.

62.

63.

64.本

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論