版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Reviewercommentsas#ReviewerCommentsforJPEM-D-13-Inthispaper,theauthordevelopedanovelmethodbasedonamorphologicalfilterandsignalcomplexitymeasurefromaneweddy-currentsensor.Theresultsshowthattheproposedmethodiseffectivefordetectingqualityproblemswithrollerbearings,showingthehighsensitivityinresolveweaksignals.Itmaybeextendedtotheproblemsofsignalprocessinginaccelerationbasedmethod.However,moreeffortsshouldbegiventomakecommentsonthemethodusedtosupportthemethodsinuse.InadditionpleaseimprovetheEnglishtoreducetyandgrrerrors.AlsopleaseaddresstheconcernsComment1:Changethe"Differentfromsignalsintheprocess…"into"UnlikesignalsTheauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment2:PleaseconsiderthefollowingsuggestionforBearingdefectiveinspectionysavitalroleinbearingqualitycontrol.Unlikesignalsintheprocessofconditionmonitoringandfaultdiagnosis,thesignalcharacteristicofdefectivebearingsismuchweakeranddifficulttobefiedthroughtheaccelerationbasedtechniques.Inthispaper,anovelsystemisdevelopedtoinspectautomaticallythesmalldefectsofrollerbearingsforon-linequalitycontrol.Ratherthanusingaccelerationbasedtechniquesthesystememploysahighsensitiveeddycurrentsensortomeasurethediscementprofilesoftheouterraceforhighsignaltonoiseratio.Furthermore,amorphologicalfilterisusedtoenhancethefeaturesignalwhichissubsequentlymeasuredbyKolmogorovcomplexitymeasure.Bothsimulatedsignalsandmeasureddatashowthatthissystemisabletodiagnosedefectsincludingabnormalsurfaceroundness,waviness,misalignedraceswhicharetypicalqualityproblemsinbearingmanufacturinglines.Theauthors’Answer:Thanksalotforthereviewer’ssuggestion.CorrectedComment3:Inthefirstparagraphinintroduction,inline4,"inspectionmeasurescanbeclassifiedintotwostepstoavoiddefects",shouldbe"avoid";inline8,"causedbymanufacturingerrororabrastivewear",shouldbe"abrasive".Theauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment4:Inthefirstparagraphofsection2.1,line3andline5,andsection2.2,line8,"elestic"shouldbe"elastic".Theauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment5:RevisethefirstsentenceofthethirdTheauthors’Thesentencehasbeenchangedasfollow:Unlikesignalsintheprocessofconditionmonitoringandfaultdiagnosis2,3,4,5,thesignalcharacteristicofdefectivebearingsisquiteweak.Comment6:CorrespondingpreviousworksusingnewsignalprocessingmethodsshouldbeTheauthors’Answer:Thankstothereviewer'sadvice,wehavejoinedthefollowingsentencesandreferencesintheintroduction.PartAseriesofmethodoftheextractionofweaksignalhasbeenbroughtout,suchasthestochasticdifficultyofthelatesignalprocessing.503,2014.pp.1773-1785,2011.Yaguo,Lei.,Jing,Lin.,Zhengjia,He.,“Applicationofanimprovedkurtogrammethodforfault1749,2011.Haiyang,Liu.,Weiguo,Huang.,Shibin,Wang.,Zhongkui,Zhu.,“AdaptivespectralkurtosisfilteringbasedonMorletwaveletanditsapplicationforsignaltransientsdetection,”MechanicalSystemsandSignalProcessing.,2014.PartAsanindexinthetime,theKolmogorovhasbeenfoundtobeaneffectivetoolforsignalysisandconditionassessmentinabearingsystem11.TheKolmogorovcanbeusedtoextractcharacteristicswhicharethenusedtoevaluatebearingqualityandtotracetosourcesRuqiang,Yan.,“ComplexityasaMeasureforMachineHealthEvaluation,”IEEETransactionsonIAM,Vol.55,pp.1327-1334,2004.Part Jing,Wang.,Guanghua,Xu.,“ApplicationofimprovedmorphologicalfiltertotheextractionofTheoreticalComment7:Section2.1andsection2.2havethesameTheauthors’Answer:Thankstothereviewer'sadvice,wehavechangedthetitleofsection2.2as“Measuringbearingdefectsbymeansofthemorphologicalfilter”Comment8:Fig.1(a)"shows"….,ratherthan"describes".Inaddition,thefigurequalityshouldbeTheauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment9:Inthefirstparagraphofsection2.1,line3andline5,andsection2.2,line8,"elestic"shouldbe"elastic".Theauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment10:Ln42,p2,changingwhile"While"into"However"willmakemoreTheauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment11:Inthethirdparagraphofsection2.2,"Inthispaper,weutilizeanaverageweightedcombinationofopen-closingandclose-openingoperation",pleaseexinwhychoosethismethod.Theauthors’Answer:Theopeningoperationcansmooththesignalfrombelowbycuttingdownitspeaks,andtheclosingoperationcansmooththesignalfromabovebyfillingupitsvalleys.AsshowninFig.7,thediscementsensorsignalisclosetothesymmetricalshapeaftertheoperationofremovingmean.Thusweutilizeanaverageweightedcombinationofopen-closingandclose-openingoperationinthispaper.Fig.7.Signalsoffivetypesofbearingsa)Qualityqualifiedbearings.b)Abnormalroughnessonouterraceway.c)Abnormalroughnessoninnerraceway.d)Bruiseonouterraceway.e)Bruiseoninnerraceway.Comment12:Insection2.3,pleaseaddmoreexnationaboutthecomplexitymeasurealgorithmtomakeitclearer.Theauthors’Comment13:Fromthegraphs,itlooksthatthemaintrendofsignalscanberemovedbyaconventionallowpassfilterwhichisefficientandreliable.Whatisthekeybenefitforusingthemorphologicalfilter?Theauthors’Fig.9. Resultsofmorphologicalfiltera)Theoriginalsignal.b)Theperiodicsignal.c)Theimpactsignal.WiththeproblemofthesamefrequencyAsshowninFig.9,theimpulsivesignalswhichareintensityrelatedtothequalityofbearingshavethesamefrequencywiththemaintrendofsignals.Thelowpassfiltermayfilterusefulcompositionsofsignals.MorphologicalfiltercanhelptoidentifydifferentqualityAsshowninFig.7,signalsofbearingswithabnormalroughnesstrendtocosinewaveformclasses,whilesignalsofbearingswithbruiseproblemstrendtotrianglewaveformclasses.Morphologicalfiltercanhelptoidentifydifferentqualityproblemstosomeextent.Morphologicalfilterhashighcodeexecutionefficiency.Therunningtimeisabout0.36susingaThinkpadT410icomputer,whichcanbeusedforon-lineoroff-linemonitoring.Comment14:Line18,P3"tocharacterize…"ratherthanTheauthors’Answer:Thanksforthereviewer’ssuggestion.CorrectedComment15:Line17,ReferencesarerequiredforthekeyfactsdescribedthisTheauthorsAnswer:8(12)Comment16:HowthedigitalizedsignalcanbemanipulatedasstringsforcalculatingtheKolmogorovcomplexityvalues.Morereferencesordescriptionrequired.Theauthors’找合適的參考文獻(xiàn)即可TheKolmogorovcomplexityhasbeenfoundtobeaneffectivetoolforsignal ysisandconditionassessmentinabearingsystem.Asanindexinthetime ,theKolmogorovhasbeenfoundtobeaneffectivetoolforsignalysisandconditionassessmentinabearingsystem11.TheKolmogorovcanbeusedtoextractcharacteristicswhicharethenusedtoevaluatebearingqualityandtotracetosources11.Ruqiang,Yan.,“ComplexityasaMeasureforMachineHealthEvaluation,”IEEETransactionsonIAM,Vol.55,pp.1327-1334,2004.Comment17:WhatisthetypeofnoiseinthesimulatedTheauthors’Thecomplexityofthesignaliscloselyrelatedtothecompositionofsignal.Thenoisedeterminesthecomplexityofthesignalinthesimulation.Theusednoiseiscolorednoise,containingdifferentspectrumstructures.Asforthewhitenoise,regardlessofitsintensitychange,theresultisverifieditscomplexityisessentiallythesame.Fig.3SimulationsoftheIntheoriginalmanuscript,theauthorprovidesresultsofthesimulationsignalandthecomplexityasFig.3.Thenoiseusedcomefromanactualrun-to-failuretestmeasuredbyanaccelerationsensor[].Afterreviewingandcarefullyysistheopinionofthereviewer,authorsthinkthatthepictureisnotasgoodastodescribethecomplexityofthesignalanditmayconfusereaders.Thereforeweuseanotherfigureinthispaperasbelow.Thosedatasetsareconstructedwithdifferenttypicalsignalssuchassinusoidal,sinusoidalwithamplitudemodulation,sinusoidalwithfrequencymodulation,andwhitenoise,andtheyareusedtotesttheverificationofcomplexity.(要加到Fig.3.Lempel-ZivindexvaluesofdifferentsimulationofThanksforthereviewers'valuablesuggestionwhichhasmadeanimportantComment18:ThetitleofFig.3isnotcorrect,pleaseTheauthors’Answer:Thanksforthereviewer’ssuggestion.ThetitleofFig.3hasbeenchangedwith“Simulationsofthecomplexity”.Comment19:Moredetailshouldbeprovidedforthesensor.Especiallyhowdifferencefromanormaleddycurrentsensorthatmakesitmoresensitiveandaccurate.Theauthors’Answer:Thanksforthereviewer’sTheelasticdeformationisquitesmall,andthevalueisintherangeof0.1to20Duetothevibrationtyisverysmall;therearealmostnooutputsignalsfromaccelerationsensor.Thankyouverymuchforthereferees’preciousopinionandourteamisreadytobuyanaccelerationsensorfromNSKforthenextexperimentTheeddycurrentsensorisusedtodetectthetinydeformationofouterring.Comparedwithaccelerationsensor,thismethodismoresensitiveandaccurate.However,thecommoneddycurrentsensorscanachievethecorrespondingdetectionresultsaslongasthedetectionrangeiswithintherangeof0.1to20microns.I'mverysorrybecauseoftheauthors’inappropriatedescribebringtheconfusiontothereviewer.Comment20:AcomparativeresultshouldbeprovidedtoconvincetheproposedmethodismoreTheauthors’Answer:Thanksforthereviewer’sTherearequiteanumberofpapersaboutthefaultdetectionofbearings,whiletheresearchofproblemsofbearingqualityisless.Themaintestingmethodisthroughthedetectionofthestaticgeometrysizeofeachcomponentofbearings.Wealsotrytousethevibrationaccelerationsensorandtheacousticemissionsensor;resultsshowthatthevibrationtyisverysmall;therearealmostnooutputsignalsfromaccelerationsensor,whichcannotbeusedforthedetectionoftheproblemofthebearingquality.Itisfoundthattheacousticemissionsensorcanbeimplementedtodetectthelubricationstateofbearings,whileitcanalsonotbeusedforthedetectionoftheproblemofthebearingquality.Theauthorswouldliketothankthereviewerfortheirinsightfulcommentsandusefulsuggestionsthathelptoimprovethequalityofthiswork.Reviewer#2:Thispapermainlydiscussesbearingqualityevaluationbasedonmorphologyfilterandthekolmogorovcomplexity.Thispaperissomewhatinteresting,butitneedtobefurtherimproved.Thecommentsaregivenbelow.Comment1:Inintroduction,themainbearingdefectsevaluationmethodsintime brieflyintroduced.Othermethod,suchasmethodsinfrequencyandtime-frequency ,shouldbeintroduced.Thenewlituresaboutfaultdiagnosisbasedonmorphologyfilterandcomplexitywhicharepublishedinthisjournalorotherjournals,shouldbedetailedinthefirstsection.Theauthors’Answer:Thankstothereviewer'sadvice,wehavejoinedthefollowingsentencesandreferencesintheintroduction.PartAseriesofmethodoftheextractionofweaksignalhasbeenbroughtout,suchasthestochasticdifficultyofthelatesignalprocessing.503,2014.pp.1773-1785,2011.Yaguo,Lei.,Jing,Lin.,Zhengjia,He.,“Applicationofanimprovedkurtogrammethodforfault1749,2011.Haiyang,Liu.,Weiguo,Huang.,Shibin,Wang.,Zhongkui,Zhu.,“AdaptivespectralkurtosisfilteringbasedonMorletwaveletanditsapplicationforsignaltransientsdetection,”MechanicalSystemsandSignalProcessing.,2014.PartAsanindexinthetime,theKolmogorovhasbeenfoundtobeaneffectivetoolforsignalysisandconditionassessmentinabearingsystem11.TheKolmogorovcanbeusedtoextractcharacteristicswhicharethenusedtoevaluatebearingqualityandtotracetosourcesRuqiang,Yan.,“ComplexityasaMeasureforMachineHealthEvaluation,”IEEETransactionsonIAM,Vol.55,pp.1327-1334,2004.Part Jing,Wang.,Guanghua,Xu.,“ApplicationofimprovedmorphologicalfiltertotheextractionofButitisnotclearwhetherenoughorbatchbearingsareusedtoobtaintheresultinthesetwotables.Howmanybearingsusedshouldbeexinedclearlyasnowitisveryvague.Theauthors’Answer:Thankstothereviewer'spreciousremind,andwehavechangedthemanuscriptasfollow:Duetothesupportoftheproject,testbearingsinthispaperare8306madebytheLYC .Thecompositionofsamplesisasfollow.Thenumberofbruisetestbearingsis20,and10bearingshavethebruiseontheinner
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 代理項(xiàng)目合同集合15篇
- 初中物理協(xié)作學(xué)習(xí)評(píng)價(jià)與人工智能技術(shù)融合的實(shí)證研究教學(xué)研究課題報(bào)告
- 高中地理環(huán)境教育與學(xué)生可持續(xù)發(fā)展意識(shí)培養(yǎng)課題報(bào)告教學(xué)研究課題報(bào)告
- 清大傳統(tǒng)染織藝術(shù)課件:刺繡工藝(中國(guó)部分)
- 人工智能與高中跨學(xué)科教學(xué)融合下的學(xué)習(xí)共同體構(gòu)建的實(shí)踐探討教學(xué)研究課題報(bào)告
- 工程師崗位面試題庫(kù)及系統(tǒng)設(shè)計(jì)案例分析含答案
- IT技術(shù)總監(jiān)面試題及高級(jí)技術(shù)問(wèn)題解析
- 酒店服務(wù)崗位面試題庫(kù)及答案參考
- 2025福建福州人才圣鑫教育科技有限公司招聘1人筆試參考題庫(kù)附帶答案詳解(3卷合一版)
- 2025湖南天岳投資集團(tuán)有限公司招聘合同制員工(第二批)筆試參考題庫(kù)附帶答案詳解(3卷)
- 《汽車發(fā)動(dòng)機(jī)構(gòu)造(雙語(yǔ)課程)》習(xí)題(按項(xiàng)目列出)
- 婚慶公司發(fā)布會(huì)策劃方案
- 松陵一中分班試卷及答案
- 《小米廣告宣傳冊(cè)》課件
- 勞務(wù)派遣公司工作方案
- 物理趣味題目試題及答案
- 華師大版數(shù)學(xué)七年級(jí)上冊(cè)《4.3 立體圖形的表面展開圖》聽評(píng)課記錄
- 2023-2024學(xué)年四川省成都市高二上學(xué)期期末調(diào)研考試地理試題(解析版)
- 陜西單招數(shù)學(xué)試題及答案
- 應(yīng)收賬款債權(quán)轉(zhuǎn)讓協(xié)議
- 四川省宜賓市長(zhǎng)寧縣2024-2025學(xué)年九年級(jí)上學(xué)期期末化學(xué)試題(含答案)
評(píng)論
0/150
提交評(píng)論