版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PowersystemloadforecastingmethodsandcharacteristicsofAbstract:Theloadforecastinginpowersystemplanningandoperationplayanimportantrole,withobviouseconomicbenefits,inessence,theelectricityloadforecastingmarketdemandforecast。Inthispaper,asystematicdescriptionandanalysisofavarietyofloadforecastingmethodsandcharacteristicsandthatgoodloadforecastingforpowersystemhasbecomeanimportantmeansofmodernmanagement。Keywords:powersystemloadforecastingelectricitymarketconstructionPlanning1。IntroductionLoadforecastingdemandforelectricityfromaknownstartingtoconsiderthepolitical,economic,climateandotherrelatedfactors,thefuturedemandforelectricitytomakepredictions.Loadforecastincludestwoaspects:onthefuturedemand(power)projectionsandfutureelectricityconsumption(energy)forecast.Electricitydemandprojectionsdecisiongeneration,transmissionanddistributionsystem,thesicofnewCapacity;powergeneratingequipmentdeterminethetypeofprediction(.suchaspeakingunits,baseloadunits,etc}。Loadforecastingpurposesistoprovideloadconditionsandthelevelofdevelopment,whileidentifyingthevarioussupplyareas,eachyearplanningforthepowerconsumptionformaximumpowerloadandtheloadofplanningtheoveralllevelofdevelopmentofeachplanyeartodeterminetheloadcomposition.loadforecastingmethodsandcharacteristicsof2。1UnitConsumptionActOutputofproductsinaccordancewithnationalarrangements,planningandelectricityintensityvaluetodetermineelectricitydemand.Sub—UnitConsumptionAct;ProductUnitConsumption;andthevalueofUnitConsumptionAct;two。Theprojectionofloadbeforethekeyistodeterminetheappropriatevalueoftheproductunitconsumptionorunitconsumption.JudgingfromChina'sactualsituation,thegeneralruleistheproductunitconsumptionincreasedyearbyyear,theoutputvalueunitconsumptionisdeclining。Unitconsumptionmethodadvantagesarc:Themethodissimple,short-tornloadforecastingeffective.Disadvantagesarc:needtodoalotofpainstakingresearchwork,moregeneral,itisdifficulttoreflectmoderneconomic,politicalandclimateconditions。2。2TrendextrapolationWhenthepowerloadinaccordancewithtime—varyingpresentsamekindofupwardordownwardtrend,andnoobviousseasonalfluctuations,butalsotofindasuitablefunctioncurvetoreflectthischangeintrend,youcanusethetimetasindependentvariables,timingvalueofyforthedependentvariabletoestablishthetrendmodely=f(t)。Whenthereasontobelievethatthistrendwillextendtothefuture,weassignedthevalueofthevariabletneedto,youcangetthecorrespondingtuneseriesofthefuturevalueofthemoment。Thisisthetrendextrapolation。Applicationofthetrendextrapolationmethodhastwoassumptions:(1)assumingthereisnostepChangeinload;(2)assumethatthedevelopmentofloadfactorsalsodeterminethefuturedevelopmentofloadanditsconditionisunchangedorchangedlittle.Selecttheappropriatetrendmodelistheapplicationofthetrendextrapolationanimportantpartofpatternrecognitionmethodandfinitedifferencemethodistoselectthetrendmodelarctwobasicways。Alineartrendextrapolationforecastingmethod,thelogarithmictrendforecastingmethod,quadraticcurvetrendforecastingmethod,exponentialcurvetrendforecastingmethod,growthcurveofthetrendpredictionmethod.Trendextrapolationmethod'sadvantagesarc:onlyneedtohistoricaldata,theamountofdatarequiredforless。Thedisadvantageisthat:Ifachangeinloadwillcauselargeerrors。2。3ElasticCoefficientMethodElasticitycoefficientistheaveragegrowthrateofelectricityconsumptiontoGDPratioofbetween,accordingtothegrossdomesticproductgrowthrateofcoefficientofelasticitytobeplanningwiththeendofthetotalelectricityconsumption。Modulesofelasticitylawisdeterminedonpowerdevelopmentfromamacrowiththerelativespeedofnationaleconomicdevelopment,whichisameasureofnationaleconomicdevelopmentandanimportantparameterinelectricitydemand.Theadvantagesofthismethodarc:Themethodissimple,easytocalculate。Disadvantagesarc:needtodoalotofdetailedresearchwork.2.4RegressionAnalysisMethodRegressionestimateisbasedonpasthistoryofloaddata,buildupamathematicalanalysisofthemathematicalmodel.Ofmathematicalstatisticsregressionanalysisofthevariablesinstatisticalanalysisofobservationaldatainordertoachieveloadtopredictthefuture.Regressionmodelwithalinearregression,multiplelinearregression,nonlinearregressionandotherregressionpredictionmodels.Amongthem,linearregressionforthemedium—torntoadforecast.Advantagesarc:ahigherpredictionaccuracyforthemediumandtheuseofshort-termforecasts.Thedisadvantageisthat:(1)planninglevelitisdifficultyearsofindustrialandagriculturaloutputstatistics;(2)regressionanalysiscanonlybemeasuredoutthelevelofdevelopmentofanintegratedelectricityloadcannotbemeasuredoutthepowersupplyareaoftheloadinglevelofdevelopment,thuscannotbethespecificgridconstructionplan。2.5TimeSeriesAnalysisTheloadisonthebasisofhistoricaldata,tryingtobuildamathematicalmodel,usingthismathematicalmodeltodescribethepowerloadontheonehandthisrandomvariableofstatisticalregularityofthechangeprocess;theotherhand,themathematicalmodelbasedonthere-establishmentofthemathematicalexpressionofloadforecastingtype,topredictthefutureload.TimeseriesaremainlyautoregressiveAR(p),movingaverageMA(q)andself—regressionandn3ovingaverageARMA(p,q)andsoon.Theadvantagesofthesemethodsarc:thehistoricaldatarequiredforless,workless。Thedisadvantageisthat:Thereisnochangeinloadfactortoconsider,onlydedicatedtothedatafitting,thelackofregularityoftreatmentisonlyapplicabletorelativelyuniformchangesintheshort—termloadforecastingsituation.2。6GraymodelmethodGraypredictionisakindofasystemcontaininguncertainfactorstopredictapproach.Graysystemtheorybasedonthegrayforecastingtechniquesmaybelimitedcircumstancesinthedatatoidentifytheroleoflawwithinacertainperiod,theestablishmentofloadforecastingmodels。Isdividedintoordinarygraysystemmodelandoptimizationmodelfortwokindsofgray.Ordinarygraypredictionmodelisanexponentialgrowthmodel,whentheelectricloadinstrictaccordancewithexponentiallygrowing,thismethodhashighaccuracyandrequiredlesssampledatatocalculatesimpleandtestableetc。;drawbackisthatforachangeinvolatilityThepowerload,thepredictionerrorlargo,doesnotmeetactualneeds。Andthegraymodeloptimizationcanhaveupsanddownsoftheoriginaldatasequencetransformedintoincreasedexponentiallyincreasingregularitychangesinsequence,greatlyimprovingpredictionaccuracyandthegraymodelmethodofapplication。GrayModelLawappliestoshort-tornloadforecast。Graypredictedadvantages:smallerloaddatarequirements,withoutregardtothedistributionoflawsanddonottakeintoaccounttrends,computingconvenient,short—termforecastsofhighprecision,easytotest.Drawbacks:First,whenthedatathegreaterthedegreeofdispersion,namely,thegreaterthegrayleveldata,predictionaccuracyisworse;2isnotverysuitableforthelong-termpowersystemtopushanumberofyearsaftertheforecast.2。7DelphiMethodTheDelphimethodisbasedonthespecialknowledgeofdirectexperience,researchproblemsofjudgment,amethodforpredictionof,alsocalledexpertsinvestigation.Delphimethodhasfeedback,anonymityandstatisticalcharacteristics.Delphimethodadvantageis:(1)canacceleratepredictionspeedandsavepredictionCost;(2)cangetdifferentbutvaluableideasandopinions;(3)suitableforlong-termforecastsinhistoricaldata,insufficientorunpredictablefactorsisparticularlyapplicablemore。Detectis:(1)theloadforecastingfarpointsareamaynotreliable;(2)theexpertopinionssometimesmaynotcompleteorimpractical.ExpertSystemApproachExpertsystempredictionisstoredinthedatabaseoverthepasttowyears,evendecades,theHourlyloadandweatherdataanalysis,whichbringstogetherexperiencedstaffknowledgeloadforecasting,extracttherelevantrules,accordingtocertainrules,loadprediction。Practicehasprovedthataccurateloadforecastingrequiresnotonlyhigh-techsupport,butalsoneedtoreconciletheexperienceandwisdomofmankinditself:Therefore,youneedexpertsystemssuchtechnologies.Expertsystemsapproachisanon-quantifiablehumanexperiencetranslatedintoabetterwayButexpertssystemsanalysisitselfisatime—consumingprocess,andsomecomplexfactors(suchasweatherfactors),eventhoughawareofitsloadimpact,ht}ttoaccuratelyandquantitativelydeterminetheirinfluenceontheloadareaisalsoverydifficult.Expertsystemforforecastingmethodsuitableformediumandlong—termloadforecast。Theadvantagesofthismethod:(1)canbringtogethermultipleexpertknowledgeandexperiencetomaximizetheabilityofexperts;(2)possessionofdata,informationandmortfactorstoconsideramorecomprehensiveandbeneficialtoarriveatmartaccurateconclusions。Thedisadvantageisthat:(1)donothavetheself-learningability,subjecttotheknowledgestoredinthedatabaselimitsthetotal;(2)pairsofunexpectedincidentsandpooradaptabilitytochangingconditionsNeuralNetworkMethodNeuralnetwork(ANN,ArtificialNeuralNetwork)forecastingtechniquestomimicthehumanbraintodointelligentprocessing,alargenumberofnon—structural.non-deterministiclawsofadaptivefunction.ANNusedinshort-termloadforecastingandlong-termloadforecastthanthatappliedtobemartappropriate.Becauseshort—termloadchangescanberegardedasastationaryrandomprocess.Andlong—termloadforecastingmaybeduetopolitical,economicandothermajorfumingpointleadingtoamathematicalmodel-baseddamage.Advantagesarc:(1)tomimicthehumanbrain,intelligenceprocessing;(2}alargenumberofnon—structural.non—adaptivefunctionoftheaccuracyofthelaw;(3)withtheinformationmemory,self—learning,knowledge,reasoningandoptimizationofcomputingfeatures.Thedisadvantageisthat:(1)thedeterminationoftheinitialvaluecannottakeadvantageofexistingsysteminformation,easilytrappedinlocalminimumofthestate;(2)neuralnetworklearningprocessisusuallyslow,pooradaptabilitytosuddenevents.OptimumCombinationForecastingMethodOptimalcombinationhastwomeanings:First,severalforecastingmethodsfromtheresultsobtainedbyselectingtheappropriatea0cightintheweightedaverage;2referstothecomparisonofseveralpredictionmethods,choosethebestorthedegreeofpreparationandthestandarddeviationofthesmallestpredictionmodelforecast。Forthecombinedforecastingmethodmustalsonotedthatthecombinedforecastisasingleforecastingmodelcannotcompletelycorrecttodescribethechangesoftheamountpredictedtoplayarole.Onecanfullyreflecttheactuallawofdevelopmentofthemodelpredictionsagreewellwiththecombinationforecastingmethodthanpredictedgoodresults。Thismethodhastheadvantage:Tooptimizethecombinationofawiderangeofinformationonasinglepredictionmodel,considertheimpactofinformationisalsomartcomprehensive,soitcaneffectivelyimprovetheprediction.Thedisadvantageisthat:(1)theweightisdifficulttodetermine;(2)allpossiblefactorsthatplayaroleinthefuture,allincludedinthemodel,toacertainextent,limitthepredictionaccuracyimproved。2。11WaveletanalysisandforecastingtechniquesWaveletanalysisisatime—domain-frequencydomainanalysismethod,itisinthetimedomainandfrequencydomainatthesametimehasgoodlocalizationproperties,andcanautomaticallyadjustaccordingtothesignalsamplingfrequencyofhighandlowdensity,itiscast'tocaptureandanalysisofweaksignalsandsignal,imagesofanysmallparts.Theadvantageis:Canthedifferentfrequencycomponentsgraduallyrefinedusingasamplingstep,whichcanbegatheredinanyofthedetailsofthesignal,especiallyforsingularsignalisverysensitivetothetreatmentwellormutationweaksignals,theirgoalistoasignalinformationintowaveletcoefficients,whichcaneasilybedealtwith,storage,transmission,analysisorforthereconstructionoftheoriginalsignal.Theseadvantagesdeterminethewaveletanalysescanbeeffectivelyappliedtoloadforecastingissues。ConclusionLoadforecastingistheelectricpowersystemscheduling,real—timecontrol,operationplananddevelopmentplanning,thepremiseisagriddispatchingdepartmentsandplanningdepartmentsmusthavethebasicinformation.Improveloadforecastingtechnologylevel,behelpfulforprogrammanagement,reasonablearrangementoftheelectricitygridoperationmodeforthemaintenanceplanandthecrew,tosectioncoal,fuel—efficientandreducegeneratingcost,behelpfulforformulaterationalpowerconstructionplanningofthepowersystem,improvetheeconomicbenefitandsocialbenefit.Therefore,theloadforecasthasbecomeapowersystemmanagementmodernizationrealizationoftheimportantcontent。電力系統(tǒng)負荷預(yù)測及方法摘要:負荷預(yù)測在電力系統(tǒng)規(guī)劃和運行方面發(fā)揮的重要作用,具有明顯的經(jīng)濟效益,負荷預(yù)測實質(zhì)上是對電力市場需求的預(yù)測.該文系統(tǒng)地介紹和分析了各種負荷預(yù)測的方法及特點,并指出做好負荷預(yù)測己成為實現(xiàn)電力系統(tǒng)管理現(xiàn)代化的重要手段。關(guān)鍵詞:電力系統(tǒng)負荷預(yù)測電力市場建設(shè)規(guī)劃引言負荷預(yù)測是從已知的用電需求出發(fā),考慮政治、經(jīng)濟、氣候等相關(guān)因素,對未來的用電需求做出的頂測。負荷預(yù)測包括兩方而的含義:對未來需求量(功率)的頂測和未來用電量(能量)的頂測。電力需求量的預(yù)測決定發(fā)電、輸電、配電系統(tǒng)新增容量的大?。浑娔茴A(yù)測決定發(fā)電設(shè)備的類型(如調(diào)峰機組、基荷機組等)。負荷預(yù)測的日的就是提供負荷發(fā)展狀況及水平,同時確定各供電區(qū)、各規(guī)劃年供用電量、供用電最大負荷和規(guī)劃地區(qū)總的負荷發(fā)展水平,確定各規(guī)劃年用電負荷構(gòu)成.2。負荷預(yù)測的方法及特點2。1單耗法按照國家女排的產(chǎn)品產(chǎn)量、產(chǎn)值計劃和用電單耗確定需電量.單耗法分“產(chǎn)品單耗法”和“產(chǎn)值單耗法”兩種.采用“單耗法”預(yù)測負荷前的關(guān)鍵是確定適當?shù)漠a(chǎn)品單耗或產(chǎn)值單耗。從我國的實際情況來看,一般規(guī)律是產(chǎn)品單耗逐年上升,產(chǎn)值單耗逐年卜降。單耗法的優(yōu)點是:方法簡單,對短期負荷預(yù)測效果較好。缺點是:需做大量細致的調(diào)研工作,比較籠統(tǒng),很難反映現(xiàn)代經(jīng)濟、政治、氣候等條件的影響。2.2趨勢外推法當電力負荷依時間變化呈現(xiàn)某種上升或下降的趨勢,并且無明顯的季節(jié)波動,又能找到一條合適的函數(shù)曲線反映這種變化趨勢時,就可以用時間t為自變量,時序數(shù)值y為因變量,建立趨勢模型Y=f(t)。當有理由相信這種趨勢能夠延伸到未來時,賦予變量t所需要的值,可以得到相應(yīng)時刻的時間序列米來值。這就是趨勢外推法。應(yīng)用趨勢外推法有兩個假設(shè)條件:(1)假設(shè)負荷沒有跳躍式變化;(2)假定負荷的發(fā)展因素也決定負荷未來的發(fā)展,其條件是不變或變化不大。選擇合適的趨勢模型是應(yīng)用趨勢外推法的重要環(huán)節(jié),圖形識別法和差分法是選擇趨勢模型的兩種基本方法.外推法有線性趨勢預(yù)測法、對數(shù)趨勢頂測法、二次曲線趨勢頂測法、指數(shù)曲線趨勢預(yù)測法、生長曲線趨勢預(yù)測法。趨勢外推法的優(yōu)點是:只需要歷史數(shù)據(jù)、所需的數(shù)據(jù)量較少。缺點是:如果負荷出現(xiàn)變動,會引起較大的誤差.2。3彈性系數(shù)法彈性系數(shù)是電量平均增長率與國內(nèi)生產(chǎn)總值之間的比值,根據(jù)國內(nèi)生產(chǎn)總值的增長速度結(jié)合彈性系數(shù)得到規(guī)劃期末的總用電量。彈性系數(shù)法是從宏觀上確定電力發(fā)展同國民經(jīng)濟發(fā)展的相對速度,它是衡量國民經(jīng)濟發(fā)展和用電需求的重要參數(shù).該方法的優(yōu)點是:方法簡單,易于計算。缺點是:需做大量細致的調(diào)研工作。2。4回歸分析法回歸預(yù)測是根據(jù)負荷過去的歷史資料,建立可以進行數(shù)學分析的數(shù)學模型.用數(shù)理統(tǒng)計中的回歸分析方法對變量的觀測數(shù)據(jù)統(tǒng)計分析,從而實現(xiàn)對未來的負荷進行預(yù)測。回歸模型有一元線性回歸、多元線性回歸、非線性回歸等回歸預(yù)測模型.其中,線性回歸用于中期負荷預(yù)測。優(yōu)點是:頂測精度較高,適用于在中、短期頂測使用。缺點是:(1)規(guī)劃水平年的工農(nóng)業(yè)總產(chǎn)值很難詳細統(tǒng)計;(2)用回歸分析法只能測算出綜合用電負荷的發(fā)展水平,無法測算出各供電區(qū)的負荷發(fā)展水平,也就無法進行具體的電網(wǎng)建設(shè)規(guī)劃.2。5時間序列法就是根據(jù)負荷的歷史資料,設(shè)法建立一個數(shù)學模型,用這個數(shù)學模型一方面來描述電力負荷這個隨機變量變化過程的統(tǒng)計規(guī)律性;另一方而在該數(shù)學模型的基礎(chǔ)上再確立負荷預(yù)測的數(shù)學表達式,對未來的負荷進行預(yù)測。時間序列法主要有自回歸AR(p).滑動平均ma(q)和自回歸與滑動平均ARMA(p,q)等。這些方法的優(yōu)點是:所需歷史數(shù)據(jù)少、工作量少.缺點是:沒有考慮負荷變化的因素,只致力于數(shù)據(jù)的擬合,對規(guī)律性的處理不足,只適用于負荷變化比較均勻的短期頂測的情況。2。6灰色模型法灰色預(yù)測是一種對含有不確定因素的系統(tǒng)進行預(yù)測的方法.以灰色系統(tǒng)理論為基礎(chǔ)的灰色頂測技術(shù),可在數(shù)據(jù)不多的情況下找出某個時期內(nèi)起作用的規(guī)律,建立負荷頂測的模型,分為普通灰色系統(tǒng)模型和最優(yōu)化灰色模型兩種。普通灰色預(yù)測模型是一種指數(shù)增長模型,當電力負荷嚴格按指數(shù)規(guī)律持續(xù)增長時,此法有預(yù)測精度高、所需樣本數(shù)據(jù)少、計算簡便、可檢驗等優(yōu)點;缺點是對于具有波動性變化的電力負荷,其預(yù)測誤差較大,不符合實際需要。向最優(yōu)化灰色模型可以把有起伏的原始數(shù)據(jù)序列變換成規(guī)律性增強的成指數(shù)遞增變化的序列,大大提高頂測精度和灰色模型法的適用范圍?;疑P头ㄟm用于短期負荷預(yù)測?;疑A(yù)測的優(yōu)點:要求負荷數(shù)據(jù)少、不考慮分布規(guī)律、不考慮變化趨勢、運算方便、短期頂測精度高易于檢驗.缺點:一是當數(shù)據(jù)離散程度越大,即數(shù)據(jù)灰度越大,預(yù)測精度越差;二是不太適合于電力系統(tǒng)的長期后推若干年的預(yù)測。2.7德爾菲法德爾菲法是根據(jù)有專門知識的人的直接經(jīng)驗,對研究的問題進行判斷、預(yù)測的一種方法,也稱專家調(diào)查法。德爾菲法其有反饋性、展名性和統(tǒng)計性的特點。德爾菲法的優(yōu)點是:(1)可以加快頂測速度和節(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026上半年安徽事業(yè)單位聯(lián)考六安市市直單位招聘131人考試備考題庫及答案解析
- 2026廣東云浮見習崗位人員招聘2人筆試參考題庫及答案解析
- 2026年安徽大學創(chuàng)新發(fā)展研究院課題組科研助理招聘1名備考題庫附答案詳解
- 2025云南大學附屬中學星耀學校招聘備考題庫及完整答案詳解1套
- 2026廣東佛山市順德區(qū)華南師范大學附屬樂從小學招聘小學數(shù)學臨聘教師1人備考題庫及參考答案詳解一套
- 2026年福建省福州市閩侯縣第四中學春季招聘臨聘教師備考題庫及答案詳解參考
- 2026年甘肅民族師范學院招聘博士研究生82人備考題庫及答案詳解1套
- 2026中國中元國際工程有限公司安全城市研究院黃曉家工作室招聘備考題庫有完整答案詳解
- 2026山東事業(yè)單位統(tǒng)考青島平度市招聘36人備考題庫及答案詳解1套
- 2026年陜西省商貿(mào)學校教師招聘備考題庫(4人)附答案詳解
- 2025上海開放大學(上海市電視中等專業(yè)學校)工作人員招聘3人(二)考試筆試參考題庫附答案解析
- 急性闌尾炎與右側(cè)輸尿管結(jié)石鑒別診斷方案
- 公司網(wǎng)絡(luò)團隊介紹
- 路虎攬勝購買合同
- 2025年文化旅游活動效果評估計劃可行性研究報告
- 塑木地板銷售合同范本
- 《青島市中小學心理危機干預(yù) 指導手冊》
- 三北工程林草濕荒一體化保護修復(2025年度退化草原修復)監(jiān)理方案投標文件(技術(shù)方案)
- 2024江蘇省常熟市中考物理試卷【歷年真題】附答案詳解
- 2025年企業(yè)法律合規(guī)性風險評估與治理方案
- DBJT15-162-2019 建筑基坑施工監(jiān)測技術(shù)標準
評論
0/150
提交評論