版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知圓內(nèi)接四邊形ABCD各邊的長度分別為AB=5,BC=8,CD=3,DA=5,則AC的長為()A.6 B.7 C.8 D.92.圓與圓的位置關(guān)系是()A.相離 B.相交 C.相切 D.內(nèi)含3.設(shè)是同一個半徑為4的球的球面上四點,為等邊三角形且其面積為,則三棱錐體積的最大值為A. B. C. D.4.已知函數(shù)的圖象如圖所示,則的解析式為()A. B.C. D.5.在等差數(shù)列中,若,則的值為()A.15 B.21 C.24 D.186.若實數(shù)滿足,則的最小值為()A.4 B.8 C.16 D.327.已知函數(shù),則()A.的最小正周期為,最大值為1 B.的最小正周期為,最大值為C.的最小正周期為,最大值為1 D.的最小正周期為,最大值為8.在中,角A,B,C所對的邊分別為a,b,c,若,,,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.無數(shù)多個9.已知平行四邊形對角線與交于點,設(shè),,則()A. B. C. D.10.的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,以為直徑的圓中,,在圓上,,于,于,,記,,的面積和為,則的最大值為______.12.若數(shù)列的前項和,滿足,則______.13.在某校舉行的歌手大賽中,7位評委為某同學(xué)打出的分?jǐn)?shù)如莖葉圖所示,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為______.14.已知直線與軸、軸相交于兩點,點在圓上移動,則面積的最大值和最小值之差為.15.兩等差數(shù)列{an}和{bn}前n項和分別為Sn,Tn,且,則=__________.16.若復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知角終邊上一點,且,求的值.18.解下列三角方程:(1);(2).19.在中,角所對的邊分別為,,,,為的中點.(1)求的長;(2)求的值.20.在中,角的對邊分別為,且角成等差數(shù)列.(1)求角的值;(2)若,求邊的長.21.已知函數(shù)f1當(dāng)a>0時,求函數(shù)y=f2若存在m>0使關(guān)于x的方程fx=m+1
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
分別在△ABC和△ACD中用余弦定理解出AC,列方程解出cosD,得出AC.【詳解】在△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB×BCcosB=89﹣80cosB,在△ACD中,由余弦定理得AC2=CD2+AD2﹣2AD×CDcosD=34﹣30cosD,∴89﹣80cosB=34﹣30cosD,∵A+C=180°,∴cosB=﹣cosD,∴cosD,∴AC2=34﹣30×()=1.∴AC=2.故選B.【點睛】本題考查了余弦定理的應(yīng)用,三角形的解法,考查了圓內(nèi)接四邊形的性質(zhì)的應(yīng)用,屬于中檔題.2、B【解析】
計算圓心距,判斷與半徑和差的關(guān)系得到位置關(guān)系.【詳解】圓心距相交故答案選B【點睛】本題考查了兩圓的位置關(guān)系,判斷圓心距與半徑和差的關(guān)系是解題的關(guān)鍵.3、B【解析】
分析:作圖,D為MO與球的交點,點M為三角形ABC的中心,判斷出當(dāng)平面時,三棱錐體積最大,然后進行計算可得.詳解:如圖所示,點M為三角形ABC的中心,E為AC中點,當(dāng)平面時,三棱錐體積最大此時,,點M為三角形ABC的中心中,有故選B.點睛:本題主要考查三棱錐的外接球,考查了勾股定理,三角形的面積公式和三棱錐的體積公式,判斷出當(dāng)平面時,三棱錐體積最大很關(guān)鍵,由M為三角形ABC的重心,計算得到,再由勾股定理得到OM,進而得到結(jié)果,屬于較難題型.4、D【解析】
由函數(shù)圖象求出,由周期求出,由五點發(fā)作圖求出的值,即可求出函數(shù)的解析式.【詳解】解:根據(jù)函數(shù)的圖象,可得,,所以.再根據(jù)五點法作圖可得,所以,故.故選:D.【點睛】本題主要考查由函數(shù)的部分圖像求解析式,屬于基礎(chǔ)題.5、D【解析】
利用等差數(shù)列的性質(zhì),將等式全部化為的形式,再計算?!驹斀狻恳驗?,且,則,所以.故選D【點睛】本題考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題。6、B【解析】
由可以得到,利用基本不等式可求最小值.【詳解】因為,故,因為,故,故,當(dāng)且僅當(dāng)時等號成立,故的最小值為8,故選B.【點睛】應(yīng)用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結(jié)構(gòu).求最值時要關(guān)注取等條件的驗證.7、D【解析】
結(jié)合二倍角公式,對化簡,可求得函數(shù)的最小正周期和最大值.【詳解】由題意,,所以,當(dāng)時,取得最大值為.由函數(shù)的最小正周期為,故的最小正周期為.故選:D.【點睛】本題考查三角函數(shù)周期性與最值,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.8、B【解析】
直接由正弦定理分析判斷得解.【詳解】由正弦定理得,所以C只有一解,所以三角形只有一解.故選:B【點睛】本題主要考查正弦定理的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.9、B【解析】
根據(jù)向量減法的三角形法則和數(shù)乘運算直接可得結(jié)果.【詳解】本題正確選項:【點睛】本題考查向量的線性運算問題,涉及到向量的減法和數(shù)乘運算的應(yīng)用,屬于基礎(chǔ)題.10、B【解析】
直接利用誘導(dǎo)公式結(jié)合特殊角的三角函數(shù)求解即可.【詳解】,故選B.【點睛】本題主要考查誘導(dǎo)公式以及特殊角的三角函數(shù),意在考查對基礎(chǔ)知識的掌握情況,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
可設(shè),表示出S關(guān)于的函數(shù),從而轉(zhuǎn)化為三角函數(shù)的最大值問題.【詳解】設(shè),則,,,當(dāng)時,.【點睛】本題主要考查函數(shù)的實際運用,三角函數(shù)最值問題,意在考查學(xué)生的劃歸能力,分析能力和數(shù)學(xué)建模能力.12、【解析】
令,得出,令,由可計算出在時的表達(dá)式,然后就是否符合進行檢驗,由此可得出.【詳解】當(dāng)時,;當(dāng)時,則.也適合.綜上所述,.故答案為:.【點睛】本題考查利用求,一般利用來計算,但需要對進行檢驗,考查計算能力,屬于基礎(chǔ)題.13、2【解析】
去掉分?jǐn)?shù)后剩余數(shù)據(jù)為22,23,24,25,26,先計算平均值,再計算方差.【詳解】去掉分?jǐn)?shù)后剩余數(shù)據(jù)為22,23,24,25,26平均值為:方差為:故答案為2【點睛】本題考查了方差的計算,意在考查學(xué)生的計算能力.14、15【解析】
解:設(shè)作出與已知直線平行且與圓相切的直線,
切點分別為,如圖所示
則動點C在圓上移動時,若C與點重合時,
△ABC面積達(dá)到最小值;而C與點重合時,△ABC面積達(dá)到最大值
∵直線3x+4y?12=0與x軸、y軸相交于A(4,0)、B(0,3)兩點
可得∴△ABC面積的最大值和最小值之差為
,
其中分別為點、點到直線AB的距離
∵是圓(x?5)2+(y?6)2=9的兩條平行切線與圓的切點
∴點、點到直線AB的距離之差等于圓的直徑,即
因此△ABC面積的最大值和最小值之差為
故答案為:1515、【解析】數(shù)列{an}和{bn}為等差數(shù)列,所以.點睛:等差數(shù)列的??夹再|(zhì):{an}是等差數(shù)列,若m+n=p+q,則.16、【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由共軛復(fù)數(shù)的概念得答案.【詳解】由z=i(2﹣i)=1+2i,得.故答案為1﹣2i.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查共軛復(fù)數(shù)的基本概念,是基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、見解析【解析】
根據(jù)三角函數(shù)定義列方程解得,再根據(jù)三角函數(shù)定義求的值.【詳解】,(1)當(dāng)時,.(2)當(dāng)時,,解得.當(dāng)時,;當(dāng)時,.綜上當(dāng)時,;當(dāng)時,;當(dāng)時,.【點睛】本題考查三角函數(shù)定義,考查基本分析求解能力,屬基礎(chǔ)題.18、(1);(2)或.【解析】
(1)先將等式變形為,并利用兩角和的余弦公式得出,即可得出,即可得出該方程的解;(2)由,將該方程變形為,求出的值,即可求出該方程的解.【詳解】(1),,即,,解得;(2),整理得,即,,得或,解得;解,得.因此,原方程的解為或.【點睛】本題考查三角方程的求解,對等式進行化簡變形是計算的關(guān)鍵,考查運算求解能力,屬于中等題.19、(1).(2)【解析】
(1)在中分別利用余弦定理完成求解;(2)在中利用正弦定理求解的值.【詳解】解:(1)在中,由余弦定理得,∴,解得∵為的中點,∴.在中,由余弦定理得,∴.(2)在中,由正弦定理得,∴.【點睛】本題考查解三角形中的正余弦定理的運用,難度較易.對于給定圖形的解三角形問題,一定要注意去結(jié)合圖形去分析.20、(1).(2)【解析】
(1)根據(jù)等差數(shù)列的性質(zhì),與三角形三內(nèi)角和等于即可解出角C的值.(2)將已知數(shù)帶入角C的余弦公式,即可解出邊c.【詳解】解:(1)∵角,,成等差數(shù)列,且為三角形的內(nèi)角,∴,,∴.(2)由余弦定理,得【點睛】本題考查等差數(shù)列、余弦定理,屬于基礎(chǔ)題.21、(1)見解析;(2)a<-3-2【解析】
(1)將問題轉(zhuǎn)化為解不等式ax2-a+1x+1≥0,即ax-1x-1≥0(2)t=m+1m≥2,將問題轉(zhuǎn)化為:關(guān)于x的方程ax2【詳解】(1)由題意,fx=ax解方程ax-1x-1=0,得x1①當(dāng)1a>1時,即當(dāng)0<a<1時,解不等式ax-1x-1≥0,得此時,函數(shù)y=fx的定義域為②當(dāng)1a=1時,即當(dāng)a=1時,解不等式x-12此時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業(yè)內(nèi)部審計質(zhì)量控制與改進方案
- 2025年流域中心工作自查自糾報告
- 新零售門店營銷活動策劃方案
- 《虛擬現(xiàn)實技術(shù)在建筑方案展示中的環(huán)境因素與用戶滿意度優(yōu)化研究》教學(xué)研究課題報告
- 幼師名師工作室活動方案
- 2026年自動駕駛在公共交通中的創(chuàng)新報告
- 醫(yī)藥行業(yè)GMP質(zhì)量管理培訓(xùn)資料
- 供水管網(wǎng)故障搶修作業(yè)方案
- 新員工入職培訓(xùn)標(biāo)準(zhǔn)流程及內(nèi)容
- 《虛擬現(xiàn)實與仿真實驗結(jié)合的石油化工職業(yè)技能培訓(xùn)沉浸感優(yōu)化》教學(xué)研究課題報告
- 撳針教學(xué)課件
- 維修基金管理辦法新疆
- QGDW1168-2013輸變電設(shè)備狀態(tài)檢修試驗規(guī)程
- T-CNAS 04-2019 住院患者身體約束護理
- 2024年廣東省公務(wù)員《申論(省市級)》試題真題及答案
- 民兵集訓(xùn)通知函
- 2025年雞飼料采購合同
- 模擬電子技術(shù)基礎(chǔ) 第4版黃麗亞課后參考答案
- 電信營業(yè)廳運營方案策劃書(2篇)
- JBT 14850-2024 塔式起重機支護系統(tǒng)(正式版)
- 專精特新申報材料范本
評論
0/150
提交評論